Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38826439

RESUMO

Oncogenic mutations in KRAS are present in approximately 95% of patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) and are considered the initiating event of pancreatic intraepithelial neoplasia (PanIN) precursor lesions. While it is well established that KRAS mutations drive the activation of oncogenic kinase cascades during pancreatic oncogenesis, the effects of oncogenic KRAS signaling on regulation of phosphatases during this process is not fully appreciated. Protein Phosphatase 2A (PP2A) has been implicated in suppressing KRAS-driven cellular transformation. However, low PP2A activity is observed in PDAC cells compared to non-transformed cells, suggesting that suppression of PP2A activity is an important step in the overall development of PDAC. In the current study, we demonstrate that KRASG12D induces the expression of both an endogenous inhibitor of PP2A activity, Cancerous Inhibitor of PP2A (CIP2A), and the PP2A substrate, c-MYC. Consistent with these findings, KRASG12D sequestered the specific PP2A subunit responsible for c-MYC degradation, B56α, away from the active PP2A holoenzyme in a CIP2A-dependent manner. During PDAC initiation in vivo, knockout of B56α promoted KRASG12D tumorigenesis by accelerating acinar-to-ductal metaplasia (ADM) and the formation of PanIN lesions. The process of ADM was attenuated ex vivo in response to pharmacological re-activation of PP2A utilizing direct small molecule activators of PP2A (SMAPs). Together, our results suggest that suppression of PP2A-B56α through KRAS signaling can promote the MYC-driven initiation of pancreatic tumorigenesis.

2.
Cell ; 187(13): 3390-3408.e19, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38754421

RESUMO

Clinical trials have identified ARID1A mutations as enriched among patients who respond favorably to immune checkpoint blockade (ICB) in several solid tumor types independent of microsatellite instability. We show that ARID1A loss in murine models is sufficient to induce anti-tumor immune phenotypes observed in ARID1A mutant human cancers, including increased CD8+ T cell infiltration and cytolytic activity. ARID1A-deficient cancers upregulated an interferon (IFN) gene expression signature, the ARID1A-IFN signature, associated with increased R-loops and cytosolic single-stranded DNA (ssDNA). Overexpression of the R-loop resolving enzyme, RNASEH2B, or cytosolic DNase, TREX1, in ARID1A-deficient cells prevented cytosolic ssDNA accumulation and ARID1A-IFN gene upregulation. Further, the ARID1A-IFN signature and anti-tumor immunity were driven by STING-dependent type I IFN signaling, which was required for improved responsiveness of ARID1A mutant tumors to ICB treatment. These findings define a molecular mechanism underlying anti-tumor immunity in ARID1A mutant cancers.


Assuntos
Linfócitos T CD8-Positivos , Proteínas de Ligação a DNA , Interferon Tipo I , Proteínas de Membrana , Neoplasias , Transdução de Sinais , Fatores de Transcrição , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Mutação , Neoplasias/imunologia , Neoplasias/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Masculino , Quimiocinas/genética , Quimiocinas/metabolismo
3.
J Biol Chem ; 300(4): 107146, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460939

RESUMO

The polybromo, brahma-related gene 1-associated factors (PBAF) chromatin remodeling complex subunit polybromo-1 (PBRM1) contains six bromodomains that recognize and bind acetylated lysine residues on histone tails and other nuclear proteins. PBRM1 bromodomains thus provide a link between epigenetic posttranslational modifications and PBAF modulation of chromatin accessibility and transcription. As a putative tumor suppressor in several cancers, PBRM1 protein expression is often abrogated by truncations and deletions. However, ∼33% of PBRM1 mutations in cancer are missense and cluster within its bromodomains. Such mutations may generate full-length PBRM1 variant proteins with undetermined structural and functional characteristics. Here, we employed computational, biophysical, and cellular assays to interrogate the effects of PBRM1 bromodomain missense variants on bromodomain stability and function. Since mutations in the fourth bromodomain of PBRM1 (PBRM1-BD4) comprise nearly 20% of all cancer-associated PBRM1 missense mutations, we focused our analysis on PBRM1-BD4 missense protein variants. Selecting 16 potentially deleterious PBRM1-BD4 missense protein variants for further study based on high residue mutational frequency and/or conservation, we show that cancer-associated PBRM1-BD4 missense variants exhibit varied bromodomain stability and ability to bind acetylated histones. Our results demonstrate the effectiveness of identifying the unique impacts of individual PBRM1-BD4 missense variants on protein structure and function, based on affected residue location within the bromodomain. This knowledge provides a foundation for drawing correlations between specific cancer-associated PBRM1 missense variants and distinct alterations in PBRM1 function, informing future cancer personalized medicine approaches.


Assuntos
Proteínas de Ligação a DNA , Mutação de Sentido Incorreto , Neoplasias , Domínios Proteicos , Fatores de Transcrição , Humanos , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/química , Ligantes , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/química , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Modelos Moleculares , Estrutura Terciária de Proteína
4.
J Med Chem ; 66(16): 11250-11270, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37552884

RESUMO

Bromodomain-containing proteins are readers of acetylated lysine and play important roles in cancer. Bromodomain-containing protein 7 (BRD7) is implicated in multiple malignancies; however, there are no selective chemical probes to study its function in disease. Using crystal structures of BRD7 and BRD9 bromodomains (BDs) bound to BRD9-selective ligands, we identified a binding pocket exclusive to BRD7. We synthesized a series of ligands designed to occupy this binding region and identified two inhibitors with increased selectivity toward BRD7, 1-78 and 2-77, which bind with submicromolar affinity to the BRD7 BD. Our binding mode analyses indicate that these ligands occupy a uniquely accessible binding cleft in BRD7 and maintain key interactions with the asparagine and tyrosine residues critical for acetylated lysine binding. Finally, we validated the utility and selectivity of the compounds in cell-based models of prostate cancer.


Assuntos
Lisina , Neoplasias da Próstata , Humanos , Masculino , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Ligantes , Lisina/química , Neoplasias da Próstata/tratamento farmacológico , Fatores de Transcrição
5.
Nucleic Acids Res ; 51(8): 3631-3649, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36808431

RESUMO

PBRM1 is a subunit of the PBAF chromatin remodeling complex, which is mutated in 40-50% of clear cell renal cell carcinoma patients. It is thought to largely function as a chromatin binding subunit of the PBAF complex, but the molecular mechanism underlying this activity is not fully known. PBRM1 contains six tandem bromodomains which are known to cooperate in binding of nucleosomes acetylated at histone H3 lysine 14 (H3K14ac). Here, we demonstrate that the second and fourth bromodomains from PBRM1 also bind nucleic acids, selectively associating with double stranded RNA elements. Disruption of the RNA binding pocket is found to compromise PBRM1 chromatin binding and inhibit PBRM1-mediated cellular growth effects.


Assuntos
Cromatina , Neoplasias Renais , Humanos , Cromatina/genética , RNA/genética , Proteínas Nucleares/metabolismo , Histonas/metabolismo , Neoplasias Renais/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo
6.
J Med Chem ; 65(20): 13714-13735, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36227159

RESUMO

PBRM1 is a subunit of the PBAF chromatin remodeling complex that uniquely contains six bromodomains. PBRM1 can operate as a tumor suppressor or tumor promoter. PBRM1 is a tumor promoter in prostate cancer, contributing to migratory and immunosuppressive phenotypes. Selective chemical probes targeting PBRM1 bromodomains are desired to elucidate the association between aberrant PBRM1 chromatin binding and cancer pathogenesis and the contributions of PBRM1 to immunotherapy. Previous PBRM1 inhibitors unselectively bind SMARCA2 and SMARCA4 bromodomains with nanomolar potency. We used our protein-detected NMR screening pipeline to screen 1968 fragments against the second PBRM1 bromodomain, identifying 17 hits with Kd values from 45 µM to >2 mM. Structure-activity relationship studies on the tightest-binding hit resulted in nanomolar inhibitors with selectivity for PBRM1 over SMARCA2 and SMARCA4. These chemical probes inhibit the association of full-length PBRM1 to acetylated histone peptides and selectively inhibit growth of a PBRM1-dependent prostate cancer cell line.


Assuntos
Histonas , Neoplasias da Próstata , Masculino , Humanos , Histonas/metabolismo , Domínios Proteicos , Cromatina , Neoplasias da Próstata/tratamento farmacológico , Carcinógenos , DNA Helicases/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo
7.
Cell Rep ; 39(1): 110637, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385731

RESUMO

ARID2 is the most recurrently mutated SWI/SNF complex member in melanoma; however, its tumor-suppressive mechanisms in the context of the chromatin landscape remain to be elucidated. Here, we model ARID2 deficiency in melanoma cells, which results in defective PBAF complex assembly with a concomitant genomic redistribution of the BAF complex. Upon ARID2 depletion, a subset of PBAF and shared BAF-PBAF-occupied regions displays diminished chromatin accessibility and associated gene expression, while BAF-occupied enhancers gain chromatin accessibility and expression of genes linked to the process of invasion. As a function of altered accessibility, the genomic occupancy of melanoma-relevant transcription factors is affected and significantly correlates with the observed transcriptional changes. We further demonstrate that ARID2-deficient cells acquire the ability to colonize distal organs in multiple animal models. Taken together, our results reveal a role for ARID2 in mediating BAF and PBAF subcomplex chromatin dynamics with consequences for melanoma metastasis.


Assuntos
Proteínas Cromossômicas não Histona , Melanoma , Fatores de Transcrição , Animais , Cromatina , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica , Humanos , Melanoma/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
NAR Cancer ; 3(4): zcab039, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34617019

RESUMO

Polycomb repressive complexes (PRCs) are a heterogenous collection of dozens, if not hundreds, of protein complexes composed of various combinations of subunits. PRCs are transcriptional repressors important for cell-type specificity during development, and as such, are commonly mis-regulated in cancer. PRCs are broadly characterized as PRC1 with histone ubiquitin ligase activity, or PRC2 with histone methyltransferase activity; however, the mechanism by which individual PRCs, particularly the highly diverse set of PRC1s, alter gene expression has not always been clear. Here we review the current understanding of how PRCs act, both individually and together, to establish and maintain gene repression, the biochemical contribution of individual PRC subunits, the mis-regulation of PRC function in different cancers, and the current strategies for modulating PRC activity. Increased mechanistic understanding of PRC function, as well as cancer-specific roles for individual PRC subunits, will uncover better targets and strategies for cancer therapies.

9.
ChemMedChem ; 16(19): 3027-3034, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34174168

RESUMO

Methyllysine reader proteins bind to methylated lysine residues and alter gene transcription by changing either the compaction state of chromatin or by the recruitment of other multiprotein complexes. The polycomb paralog family of methyllysine readers bind to trimethylated lysine on the tail of histone 3 (H3) via a highly conserved aromatic cage located in their chromodomains. Each of the polycomb paralogs are implicated in several disease states. CBX6 and CBX8 are members of the polycomb paralog family with two structurally similar chromodomains. By exploring the structure-activity relationships of a previously reported CBX6 inhibitor we have discovered more potent and cell permeable analogs. Our current report includes potent, dual-selective inhibitors of CBX6 and CBX8. We have shown that the -2 position in our scaffold is an important residue for selectivity amongst the polycomb paralogs. Preliminary cell-based studies show that the new inhibitors impact cell proliferation in a rhabdoid tumor cell line.


Assuntos
Antineoplásicos/farmacologia , Peptídeos/farmacologia , Complexo Repressor Polycomb 1/antagonistas & inibidores , Proteínas do Grupo Polycomb/antagonistas & inibidores , Antineoplásicos/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Estrutura Molecular , Peptídeos/química , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Relação Estrutura-Atividade
10.
Chembiochem ; 22(13): 2335-2344, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33950564

RESUMO

Polycomb group (PcG) proteins are epigenetic regulators that facilitate both embryonic development and cancer progression. PcG proteins form Polycomb repressive complexes 1 and 2 (PRC1 and PRC2). PRC2 trimethylates histone H3 lysine 27 (H3K27me3), a histone mark recognized by the N-terminal chromodomain (ChD) of the CBX subunit of canonical PRC1. There are five PcG CBX paralogs in humans. CBX2 in particular is upregulated in a variety of cancers, particularly in advanced prostate cancers. Using CBX2 inhibitors to understand and target CBX2 in prostate cancer is highly desirable; however, high structural similarity among the CBX ChDs has been challenging for developing selective CBX ChD inhibitors. Here, we utilize selections of focused DNA encoded libraries (DELs) for the discovery of a selective CBX2 chromodomain probe, SW2_152F. SW2_152F binds to CBX2 ChD with a Kd of 80 nM and displays 24-1000-fold selectivity for CBX2 ChD over other CBX paralogs in vitro. SW2_152F is cell permeable, selectively inhibits CBX2 chromatin binding in cells, and blocks neuroendocrine differentiation of prostate cancer cell lines in response to androgen deprivation.


Assuntos
Carcinoma Neuroendócrino/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Complexo Repressor Polycomb 1/química , Proteínas do Grupo Polycomb/metabolismo , Neoplasias da Próstata/metabolismo , Bibliotecas de Moléculas Pequenas/química , Sequência de Aminoácidos , Antagonistas de Androgênios/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Histonas/metabolismo , Humanos , Ligantes , Masculino , Complexo Repressor Polycomb 1/genética , Ligação Proteica , Bibliotecas de Moléculas Pequenas/metabolismo
11.
Cancer Res ; 81(4): 820-833, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33355184

RESUMO

Switch/sucrose-nonfermentable (SWI/SNF) chromatin-remodeling complexes are critical regulators of chromatin dynamics during transcription, DNA replication, and DNA repair. A recently identified SWI/SNF subcomplex termed GLTSCR1/1L-BAF (GBAF; or "noncanonical BAF", ncBAF) uniquely contains bromodomain-containing protein BRD9 and glioma tumor suppressor candidate region 1 (GLTSCR1) or its paralog GLTSCR1-like (GLTSCR1L). Recent studies have identified a unique dependency on GBAF (ncBAF) complexes in synovial sarcoma and malignant rhabdoid tumors, both of which possess aberrations in canonical BAF (cBAF) and Polybromo-BAF (PBAF) complexes. Dependencies on GBAF in malignancies without SWI/SNF aberrations, however, are less defined. Here, we show that GBAF, particularly its BRD9 subunit, is required for the viability of prostate cancer cell lines in vitro and for optimal xenograft tumor growth in vivo. BRD9 interacts with androgen receptor (AR) and CCCTC-binding factor (CTCF), and modulates AR-dependent gene expression. The GBAF complex exhibits overlapping genome localization and transcriptional targets as bromodomain and extraterminal domain-containing (BET) proteins, which are established AR coregulators. Our results demonstrate that GBAF is critical for coordinating SWI/SNF-BET cooperation and uncover a new druggable target for AR-positive prostate cancers, including those resistant to androgen deprivation or antiandrogen therapies. SIGNIFICANCE: Advanced prostate cancers resistant to androgen receptor antagonists are still susceptible to nontoxic BRD9 inhibitors, making them a promising alternative for halting AR signaling in progressed disease.


Assuntos
Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Fatores de Transcrição/fisiologia , Antagonistas de Receptores de Andrógenos/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Nus , Células PC-3 , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , RNA Interferente Pequeno/farmacologia , Receptores Androgênicos/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Ensaios Antitumorais Modelo de Xenoenxerto
12.
ACS Chem Biol ; 15(6): 1685-1696, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32369697

RESUMO

SWI/SNF (BAF) complexes are a diverse family of ATP-dependent chromatin remodelers produced by combinatorial assembly that are mutated in and thought to contribute to 20% of human cancers and a large number of neurologic diseases. The gene-activating functions of BAF complexes are essential for viability of many cell types, limiting the development of small molecule inhibitors. To circumvent the potential toxicity of SWI/SNF inhibition, we identified small molecules that inhibit the specific repressive function of these complexes but are relatively nontoxic and importantly synergize with ATR inhibitors in killing cancer cells. Our studies suggest an avenue for therapeutic enhancement of ATR/ATM inhibition and provide evidence for chemical synthetic lethality of BAF complexes as a therapeutic strategy in cancer.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Neoplasias/patologia , Fatores de Transcrição/metabolismo , Ciclo Celular/efeitos dos fármacos , Células HCT116 , Humanos , Inibidores de Proteínas Quinases/farmacologia
13.
ACS Chem Biol ; 15(1): 112-131, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31755685

RESUMO

Polycomb repressive complex 1 (PRC1) is critical for mediating gene expression during development. Five chromobox (CBX) homolog proteins, CBX2, CBX4, CBX6, CBX7, and CBX8, are incorporated into PRC1 complexes, where they mediate targeting to trimethylated lysine 27 of histone H3 (H3K27me3) via the N-terminal chromodomain (ChD). Individual CBX paralogs have been implicated as drug targets in cancer; however, high similarities in sequence and structure among the CBX ChDs provide a major obstacle in developing selective CBX ChD inhibitors. Here we report the selection of small, focused, DNA-encoded libraries (DELs) against multiple homologous ChDs to identify modifications to a parental ligand that confer both selectivity and potency for the ChD of CBX8. This on-DNA, medicinal chemistry approach enabled the development of SW2_110A, a selective, cell-permeable inhibitor of the CBX8 ChD. SW2_110A binds CBX8 ChD with a Kd of 800 nM, with minimal 5-fold selectivity for CBX8 ChD over all other CBX paralogs in vitro. SW2_110A specifically inhibits the association of CBX8 with chromatin in cells and inhibits the proliferation of THP1 leukemia cells driven by the MLL-AF9 translocation. In THP1 cells, SW2_110A treatment results in a significant decrease in the expression of MLL-AF9 target genes, including HOXA9, validating the previously established role for CBX8 in MLL-AF9 transcriptional activation, and defining the ChD as necessary for this function. The success of SW2_110A provides great promise for the development of highly selective and cell-permeable probes for the full CBX family. In addition, the approach taken provides a proof-of-principle demonstration of how DELs can be used iteratively for optimization of both ligand potency and selectivity.


Assuntos
Antineoplásicos/química , Inibidores Enzimáticos/química , Biblioteca Gênica , Ligantes , Complexo Repressor Polycomb 1/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Proliferação de Células/efeitos dos fármacos , Cromatina/metabolismo , Clonagem Molecular , DNA/metabolismo , Desenvolvimento de Medicamentos , Expressão Gênica , Histonas/química , Humanos , Ligases/metabolismo , Lisina/química , Complexo Repressor Polycomb 1/antagonistas & inibidores , Complexo Repressor Polycomb 1/genética , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Relação Estrutura-Atividade , Especificidade por Substrato , Translocação Genética
14.
iScience ; 15: 196-210, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31077944

RESUMO

Polybromo1 (PBRM1) is a chromatin remodeler subunit highly mutated in cancer, particularly clear cell renal carcinoma. PBRM1 is a member of the SWI/SNF subcomplex, PBAF (PBRM1-Brg1/Brm-associated factors), and is characterized by six tandem bromodomains. Here we establish a role for PBRM1 in epithelial cell maintenance through the expression of genes involved in cell adhesion, metabolism, stress response, and apoptosis. In support of a general role for PBRM1 in stress response and apoptosis, we observe that loss of PBRM1 results in an increase in reactive oxygen species generation and a decrease in cellular viability under stress conditions. We find that loss of PBRM1 promotes cell growth under favorable conditions but is required for cell survival under conditions of cellular stress.

15.
Nat Chem Biol ; 15(4): 391-400, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718813

RESUMO

Hereditary cancer disorders often provide an important window into novel mechanisms supporting tumor growth. Understanding these mechanisms thus represents a vital goal. Toward this goal, here we report a chemoproteomic map of fumarate, a covalent oncometabolite whose accumulation marks the genetic cancer syndrome hereditary leiomyomatosis and renal cell carcinoma (HLRCC). We applied a fumarate-competitive chemoproteomic probe in concert with LC-MS/MS to discover new cysteines sensitive to fumarate hydratase (FH) mutation in HLRCC cell models. Analysis of this dataset revealed an unexpected influence of local environment and pH on fumarate reactivity, and enabled the characterization of a novel FH-regulated cysteine residue that lies at a key protein-protein interface in the SWI-SNF tumor-suppressor complex. Our studies provide a powerful resource for understanding the covalent imprint of fumarate on the proteome and lay the foundation for future efforts to exploit this distinct aspect of oncometabolism for cancer diagnosis and therapy.


Assuntos
Fumaratos/metabolismo , Leiomiomatose/metabolismo , Síndromes Neoplásicas Hereditárias/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Uterinas/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Cisteína , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Leiomiomatose/genética , Modelos Biológicos , Síndromes Neoplásicas Hereditárias/genética , Proteômica , Transdução de Sinais , Neoplasias Cutâneas/genética , Espectrometria de Massas em Tandem/métodos , Neoplasias Uterinas/genética
16.
J Cell Sci ; 132(2)2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30559249

RESUMO

Metazoans contain two homologs of the Gcn5-binding protein Ada2, Ada2a and Ada2b, which nucleate formation of the ATAC and SAGA complexes, respectively. In Drosophila melanogaster, there are two splice isoforms of Ada2b: Ada2b-PA and Ada2b-PB. Here, we show that only the Ada2b-PB isoform is in SAGA; in contrast, Ada2b-PA associates with Gcn5, Ada3, Sgf29 and Chiffon, forming the Chiffon histone acetyltransferase (CHAT) complex. Chiffon is the Drosophila ortholog of Dbf4, which binds and activates the cell cycle kinase Cdc7 to initiate DNA replication. In flies, Chiffon and Cdc7 are required in ovary follicle cells for gene amplification, a specialized form of DNA re-replication. Although chiffon was previously reported to be dispensable for viability, here, we find that Chiffon is required for both histone acetylation and viability in flies. Surprisingly, we show that chiffon is a dicistronic gene that encodes distinct Cdc7- and CHAT-binding polypeptides. Although the Cdc7-binding domain of Chiffon is not required for viability in flies, the CHAT-binding domain is essential for viability, but is not required for gene amplification, arguing against a role in DNA replication.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas do Ovo/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Acetilação , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas do Ovo/genética , Histona Acetiltransferases/genética , Histonas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
17.
Mol Pharmacol ; 94(3): 963-972, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29950405

RESUMO

Functional characterization of adenylyl cyclase (AC) isoforms has proven challenging in mammalian cells because of the endogenous expression of multiple AC isoforms and the high background cAMP levels induced by nonselective AC activators. To simplify the characterization of individual transmembrane AC (mAC) isoforms, we generated a human embryonic kidney cell line 293 (HEK293) with low cAMP levels by knocking out two highly expressed ACs, AC3 and AC6, using CRISPR/Cas9 technology. Stable HEK293 cell lines lacking either AC6 (HEK-ACΔ6) or both AC3 and AC6 (HEK-ACΔ3/6) were generated. Knockout was confirmed genetically and by comparing cAMP responses of the knockout cells to the parental cell line. HEK-ACΔ6 and HEK-ACΔ3/6 cells revealed an 85% and 95% reduction in the forskolin-stimulated cAMP response, respectively. Forskolin- and Gαs-coupled receptor-induced activation was examined for the nine recombinant mAC isoforms in the HEK-ACΔ3/6 cells. Forskolin-mediated cAMP accumulation for AC1-6 and AC8 revealed 10- to 250-fold increases over the basal cAMP levels. All nine mAC isoforms, except AC8, also exhibited significantly higher cAMP levels than the control cells after Gαs-coupled receptor activation. Isoform-specific AC regulation by protein kinases and Ca2+/calmodulin was also recapitulated in the knockout cells. Furthermore, the utility of the HEK-ACΔ3/6 cell line was demonstrated by characterizing the activity of novel AC1 forskolin binding-site mutants. Hence, we have developed a HEK293 cell line deficient of endogenous AC3 and AC6 with low cAMP background levels for studies of cAMP signaling and AC isoform regulation.


Assuntos
Adenilil Ciclases/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/fisiologia , AMP Cíclico/metabolismo , Transdução de Sinais/fisiologia , Adenilil Ciclases/química , Sítios de Ligação/fisiologia , Proteína 9 Associada à CRISPR/química , Sistemas CRISPR-Cas/efeitos dos fármacos , Colforsina/metabolismo , Colforsina/farmacologia , AMP Cíclico/química , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Isoproterenol/metabolismo , Isoproterenol/farmacologia , Estrutura Secundária de Proteína , Transdução de Sinais/efeitos dos fármacos
18.
Proteomics ; 18(11): e1700427, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29655301

RESUMO

Analysis of protein complexes provides insights into how the ensemble of expressed proteome is organized into functional units. While there have been advances in techniques for proteome-wide profiling of cytoplasmic protein complexes, information about human nuclear protein complexes are very limited. To close this gap, we combined native size exclusion chromatography (SEC) with label-free quantitative MS profiling to characterize hundreds of nuclear protein complexes isolated from human glioblastoma multiforme T98G cells. We identified 1794 proteins that overlapped between two biological replicates of which 1244 proteins were characterized as existing within stably associated putative complexes. co-IP experiments confirmed the interaction of PARP1 with Ku70/Ku80 proteins and HDAC1 (histone deacetylase complex 1) and CHD4. HDAC1/2 also co-migrated with various SIN3A and nucleosome remodeling and deacetylase components in SEC fractionation including SIN3A, SAP30, RBBP4, RBBP7, and NCOR1. Co-elution of HDAC1/2/3 with both the KDM1A and RCOR1 further confirmed that these proteins are integral components of human deacetylase complexes. Our approach also demonstrated the ability to identify potential moonlighting complexes and novel complexes containing uncharacterized proteins. Overall, the results demonstrated the utility of SEC fractionation and LC-MS analysis for system-wide profiling of proteins to predict the existence of distinct forms of nuclear protein complexes.


Assuntos
Glioblastoma/metabolismo , Espectrometria de Massas/métodos , Complexos Multiproteicos/análise , Proteínas Nucleares/análise , Proteoma/análise , Cromatografia em Gel , Glioblastoma/patologia , Humanos , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Células Tumorais Cultivadas
19.
J Biol Chem ; 293(11): 3892-3903, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29374058

RESUMO

The mammalian SWI/SNF chromatin remodeling complex is a heterogeneous collection of related protein complexes required for gene regulation and genome integrity. It contains a central ATPase (BRM or BRG1) and various combinations of 10-14 accessory subunits (BAFs for BRM/BRG1 Associated Factors). Two distinct complexes differing in size, BAF and the slightly larger polybromo-BAF (PBAF), share many of the same core subunits but are differentiated primarily by having either AT-rich interaction domain 1A/B (ARID1A/B in BAF) or ARID2 (in PBAF). Using density gradient centrifugation and immunoprecipitation, we have identified and characterized a third and smaller SWI/SNF subcomplex. We termed this complex GBAF because it incorporates two mutually exclusive paralogs, GLTSCR1 (glioma tumor suppressor candidate region gene 1) or GLTSCR1L (GLTSCR1-like), instead of an ARID protein. In addition to GLTSCR1 or GLTSCR1L, the GBAF complex contains BRD9 (bromodomain-containing 9) and the BAF subunits BAF155, BAF60, SS18, BAF53a, and BRG1/BRM. We observed that GBAF does not contain the core BAF subunits BAF45, BAF47, or BAF57. Even without these subunits, GBAF displayed in vitro ATPase activity and bulk chromatin affinity comparable to those of BAF. GBAF associated with BRD4, but, unlike BRD4, the GBAF component GLTSCR1 was not required for the viability of the LNCaP prostate cancer cell line. In contrast, GLTSCR1 or GLTSCR1L knockouts in the metastatic prostate cancer cell line PC3 resulted in a loss in proliferation and colony-forming ability. Taken together, our results provide evidence for a compositionally novel SWI/SNF subcomplex with cell type-specific functions.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica , Neoplasias da Próstata/patologia , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular , Diferenciação Celular , Proliferação de Células , Proteínas Cromossômicas não Histona/genética , Humanos , Masculino , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Fatores de Transcrição/genética , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/genética
20.
J Vis Exp ; (128)2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28994797

RESUMO

Elucidation of the binding properties of chromatin-targeting proteins can be very challenging due to the complex nature of chromatin and the heterogeneous nature of most mammalian chromatin-modifying complexes. In order to overcome these hurdles, we have adapted a sequential salt extraction (SSE) assay for evaluating the relative binding affinities of chromatin-bound complexes. This easy and straightforward assay can be used by non-experts to evaluate the relative difference in binding affinity of two related complexes, the changes in affinity of a complex when a subunit is lost or an individual domain is inactivated, and the change in binding affinity after alterations to the chromatin landscape. By sequentially re-suspending bulk chromatin in increasing amounts of salt, we are able to profile the elution of a particular protein from chromatin. Using these profiles, we are able to determine how alterations in a chromatin-modifying complex or alterations to the chromatin environment affect binding interactions. Coupling SSE with other in vitro and in vivo assays, we can determine the roles of individual domains and proteins on the functionality of a complex in a variety of chromatin environments.


Assuntos
Fracionamento Químico/métodos , Cromatina/metabolismo , Cloreto de Sódio/química , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Feminino , Células HEK293 , Humanos , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/química , Neoplasias Ovarianas/metabolismo , Ligação Proteica , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA