Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Genet ; 143(5): 721-734, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38691166

RESUMO

TMPRSS3-related hearing loss presents challenges in correlating genotypic variants with clinical phenotypes due to the small sample sizes of previous studies. We conducted a cross-sectional genomics study coupled with retrospective clinical phenotype analysis on 127 individuals. These individuals were from 16 academic medical centers across 6 countries. Key findings revealed 47 unique TMPRSS3 variants with significant differences in hearing thresholds between those with missense variants versus those with loss-of-function genotypes. The hearing loss progression rate for the DFNB8 subtype was 0.3 dB/year. Post-cochlear implantation, an average word recognition score of 76% was observed. Of the 51 individuals with two missense variants, 10 had DFNB10 with profound hearing loss. These 10 all had at least one of 4 TMPRSS3 variants predicted by computational modeling to be damaging to TMPRSS3 structure and function. To our knowledge, this is the largest study of TMPRSS3 genotype-phenotype correlations. We find significant differences in hearing thresholds, hearing loss progression, and age of presentation, by TMPRSS3 genotype and protein domain affected. Most individuals with TMPRSS3 variants perform well on speech recognition tests after cochlear implant, however increased age at implant is associated with worse outcomes. These findings provide insight for genetic counseling and the on-going design of novel therapeutic approaches.


Assuntos
Estudos de Associação Genética , Perda Auditiva , Proteínas de Membrana , Serina Endopeptidases , Humanos , Feminino , Masculino , Serina Endopeptidases/genética , Adulto , Proteínas de Membrana/genética , Perda Auditiva/genética , Criança , Pessoa de Meia-Idade , Adolescente , Pré-Escolar , Genótipo , Estudos de Coortes , Fenótipo , Mutação de Sentido Incorreto , Estudos Transversais , Adulto Jovem , Estudos Retrospectivos , Idoso , Proteínas de Neoplasias
2.
Neurobiol Aging ; 131: 182-195, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37677864

RESUMO

A missense variant in the tetratricopeptide repeat domain 3 (TTC3) gene (rs377155188, p.S1038C, NM_003316.4:c 0.3113C>G) was found to segregate with disease in a multigenerational family with late-onset Alzheimer's disease. This variant was introduced into induced pluripotent stem cells (iPSCs) derived from a cognitively intact individual using CRISPR genome editing, and the resulting isogenic pair of iPSC lines was differentiated into cortical neurons. Transcriptome analysis showed an enrichment for genes involved in axon guidance, regulation of actin cytoskeleton, and GABAergic synapse. Functional analysis showed that the TTC3 p.S1038C iPSC-derived neuronal progenitor cells had altered 3-dimensional morphology and increased migration, while the corresponding neurons had longer neurites, increased branch points, and altered expression levels of synaptic proteins. Pharmacological treatment with small molecules that target the actin cytoskeleton could revert many of these cellular phenotypes, suggesting a central role for actin in mediating the cellular phenotypes associated with the TTC3 p.S1038C variant.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Doença de Alzheimer/genética , Neurônios , Citoesqueleto de Actina , Transtornos de Início Tardio , Prosencéfalo , Transdução de Sinais/genética , Ubiquitina-Proteína Ligases
3.
JHEP Rep ; 4(12): 100592, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36439639

RESUMO

Background & Aims: Increased expression of IFN-stimulated gene 15 (ISG15) and subsequently increased ISGylation are key factors in the host response to viral infection. In this study, we sought to characterize the expression of ISG15, ISGylation, and associated enzymes at each stage of differentiation from induced pluripotent stem cells (iPSCs) to hepatocytes. Methods: To study the regulation of ISGylation, we utilized patient samples and in vitro cell culture models including iPSCs, hepatocytes-like cells, immortalized cell lines, and primary human hepatocytes. Protein/mRNA expression were measured following treatment with poly(I:C), IFNα and HCV infection. Results: When compared to HLCs, we observed several novel aspects of the ISGylation pathway in iPSCs. These include a lower baseline expression of the ISGylation-activating enzyme, UBE1L, a lack of IFN-induced expression of the ISGylation-conjugation enzyme UBE2L6, an attenuated activation of the transcription factor STAT1 and constitutive expression of SOCS1. ISGylation was observed in iPSCs following downregulation of SOCS1, which facilitated STAT1 activation and subsequently increased expression of UBE2L6. Intriguingly, HCV permissive transformed hepatoma cell lines demonstrated higher intrinsic expression of SOCS1 and weaker ISGylation following IFN treatment. SOCS1 downregulation in HCV-infected Huh 7.5.1 cells led to increased ISGylation. Conclusions: Herein, we show that high basal levels of SOCS1 inhibit STAT1 activation and subsequently IFN-induced UBE2L6 and ISGylation in iPSCs. Furthermore, as iPSCs differentiate into hepatocytes, epigenetic mechanisms regulate ISGylation by modifying UBE1L and SOCS1 expression levels. Overall, this study demonstrates that the development of cell-intrinsic innate immunity during the differentiation of iPSCs to hepatocytes provides insight into cell type-specific regulation of host defense responses and related oncogenic processes. Impact and implications: To elucidate the mechanism underlying regulation of ISGylation, a key process in the innate immune response, we studied changes in ISGylation-associated genes at the different stages of differentiation from iPSCs to hepatocytes. We found that high basal levels of SOCS1 inhibit STAT1 activation and subsequently IFN-induced UBE2L6 and ISGylation in iPSCs. Importantly, epigenetic regulation of SOCS1 and subsequently ISGylation may be important factors in the development of cell type-specific host defense responses in hepatocytes that should be considered when studying chronic infections and oncogenic processes in the liver.

4.
Stem Cell Res ; 55: 102474, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34352618

RESUMO

The UMi031-A-2 hiPSC line contains a CRISPR-induced homozygous, Neurofibromatosis Type 2 (NF2) mutation (L64P (CTG > CCG)) in the NF2 gene that encodes a merlin tumor suppressor. This line was generated from an unaffected iPSC line using CRISPR technology and characterized for pluripotency and karyotypic stability. The c.191 T > C variant in NF2 is associated with a syndromic nervous system tumor disorder leading to the development of bilateral vestibular schwannomas. Once differentiated into Schwann cells, UMi031-A-2 can serve as a resource for the analysis of signaling pathways deregulated upon merlin defects and provide a pre-clinical platform for testing therapies for NF2 schwannomas.


Assuntos
Neurilemoma , Neurofibromatose 2 , Células-Tronco Pluripotentes , Humanos , Mutação , Neurofibromatose 2/genética , Neurofibromina 2/genética
5.
J Assoc Res Otolaryngol ; 22(2): 95-105, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33507440

RESUMO

Progressive non-syndromic sensorineural hearing loss (PNSHL) is the most common cause of sensory impairment, affecting more than a third of individuals over the age of 65. PNSHL includes noise-induced hearing loss (NIHL) and inherited forms of deafness, among which is delayed-onset autosomal dominant hearing loss (AD PNSHL). PNSHL is a prime candidate for genetic therapies due to the fact that PNSHL has been studied extensively, and there is a potentially wide window between identification of the disorder and the onset of hearing loss. Several gene therapy strategies exist that show potential for targeting PNSHL, including viral and non-viral approaches, and gene editing versus gene-modulating approaches. To fully explore the potential of these therapy strategies, a faithful in vitro model of the human inner ear is needed. Such models may come from induced pluripotent stem cells (iPSCs). The development of new treatment modalities by combining iPSC modeling with novel and innovative gene therapy approaches will pave the way for future applications leading to improved quality of life for many affected individuals and their families.


Assuntos
Terapia Genética , Perda Auditiva , Células-Tronco Pluripotentes Induzidas , Transplante de Células-Tronco , Perda Auditiva/terapia , Humanos , Qualidade de Vida
6.
PLoS Pathog ; 15(7): e1007883, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31260499

RESUMO

Chronic infection with human immunodeficiency virus (HIV) and hepatitis C virus (HCV) affects an estimated 35 million and 75 million individuals worldwide, respectively. These viruses induce persistent inflammation which often drives the development or progression of organ-specific diseases and even cancer including Hepatocellular Carcinoma (HCC). In this study, we sought to examine inflammatory responses following HIV or HCV stimulation of macrophages or Kupffer cells (KCs), that may contribute to virus mediated inflammation and subsequent liver disease. KCs are liver-resident macrophages and reports have provided evidence that HIV can stimulate and infect them. In order to characterize HIV-intrinsic innate immune responses that may occur in the liver, we performed microarray analyses on KCs following HIV stimulation. Our data demonstrate that KCs upregulate several innate immune signaling pathways involved in inflammation, myeloid cell maturation, stellate cell activation, and Triggering Receptor Expressed on Myeloid cells 1 (TREM1) signaling. TREM1 is a member of the immunoglobulin superfamily of receptors and it is reported to be involved in systemic inflammatory responses due to its ability to amplify activation of host defense signaling pathways. Our data demonstrate that stimulation of KCs with HIV or HCV induces the upregulation of TREM1. Additionally, HIV viral proteins can upregulate expression of TREM1 mRNA through NF-кB signaling. Furthermore, activation of the TREM1 signaling pathway, with a targeted agonist, increased HIV or HCV-mediated inflammatory responses in macrophages due to enhanced activation of the ERK1/2 signaling cascade. Silencing TREM1 dampened inflammatory immune responses elicited by HIV or HCV stimulation. Finally, HIV and HCV infected patients exhibit higher expression and frequency of TREM1 and CD68 positive cells. Taken together, TREM1 induction by HIV contributes to chronic inflammation in the liver and targeting TREM1 signaling may be a therapeutic option to minimize HIV induced chronic inflammation.


Assuntos
Infecções por HIV/imunologia , Hepatite C Crônica/imunologia , Receptor Gatilho 1 Expresso em Células Mieloides/imunologia , Estudos de Casos e Controles , Linhagem Celular , Quimiocinas/biossíntese , Citocinas/biossíntese , Infecções por HIV/complicações , Infecções por HIV/genética , Hepatite C Crônica/complicações , Hepatite C Crônica/genética , Humanos , Imunidade Inata/genética , Inflamação/etiologia , Inflamação/genética , Inflamação/imunologia , Células de Kupffer/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Células Mieloides/imunologia , Transdução de Sinais/imunologia , Receptor Gatilho 1 Expresso em Células Mieloides/genética
7.
Hypertension ; 71(4): 752-760, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29483230

RESUMO

Cocaine abuse increases the risk of cardiovascular mortality and morbidity; however, the underlying molecular mechanisms remain elusive. By using a mouse model for cocaine abuse/use, we found that repeated cocaine injection led to increased blood pressure and aortic stiffness in mice associated with elevated levels of reactive oxygen species (ROS) in the aortas, a phenomenon similar to that observed in hypertensive humans. This ROS elevation was correlated with downregulation of Me1 (malic enzyme 1), an important redox molecule that counteracts ROS generation, and upregulation of microRNA (miR)-30c-5p that targets Me1 expression by directly binding to its 3'UTR (untranslated region). Remarkably, lentivirus-mediated overexpression of miR-30c-5p in aortic smooth muscle cells recapitulated the effect of cocaine on Me1 suppression, which in turn led to ROS elevation. Moreover, in vivo silencing of miR-30c-5p in smooth muscle cells resulted in Me1 upregulation, ROS reduction, and significantly suppressed cocaine-induced increases in blood pressure and aortic stiffness-a similar effect to that produced by treatment with the antioxidant N-acetyl cysteine. Discovery of this novel cocaine-↑miR-30c-5p-↓Me1-↑ROS pathway provides a potential new therapeutic avenue for treatment of cocaine abuse-related cardiovascular disease.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína/farmacologia , Malato Desidrogenase/metabolismo , MicroRNAs/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/metabolismo , Transtornos Relacionados ao Uso de Cocaína/complicações , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Modelos Animais de Doenças , Regulação para Baixo , Injeções , Camundongos , Oxirredução , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Rigidez Vascular/efeitos dos fármacos , Vasoconstritores/farmacologia
8.
Arterioscler Thromb Vasc Biol ; 37(2): 280-290, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27908889

RESUMO

OBJECTIVE: Lineage-negative bone marrow cells (lin- BMCs) are enriched in endothelial progenitor cells and mediate vascular repair. Aging-associated senescence and apoptosis result in reduced number and functionality of lin- BMCs, impairing their prorepair capacity. The molecular mechanisms underlying lin- BMC senescence and apoptosis are poorly understood. MicroRNAs (miRNAs) regulate many important biological processes. The identification of miRNA-mRNA networks that modulate the health and functionality of lin- BMCs is a critical step in understanding the process of vascular repair. The aim of this study was to characterize the role of the miR-146a-Polo-like kinase 2 (Plk2) network in regulating lin- BMC senescence, apoptosis, and their angiogenic capability. APPROACH AND RESULTS: Transcriptome analysis in lin- BMCs isolated from young and aged wild-type and ApoE-/- (apolipoprotein E) mice showed a significant age-associated increase in miR-146a expression. In silico analysis, expression study and Luciferase reporter assay established Plk2 as a direct target of miR-146a. miR-146a overexpression in young lin- BMCs inhibited Plk2 expression, resulting in increased senescence and apoptosis, via p16Ink4a/p19Arf and p53, respectively, as well as impaired angiogenic capacity in vitro and in vivo. Conversely, suppression of miR-146a in aged lin- BMCs increased Plk2 expression and rejuvenated lin- BMCs, resulting in decreased senescence and apoptosis, leading to improved angiogenesis. CONCLUSIONS: (1) miR-146a regulates lin- BMC senescence and apoptosis by suppressing Plk2 expression that, in turn, activates p16Ink4a/p19Arf and p53 and (2) modulation of miR-146a or its target Plk2 may represent a potential therapeutic intervention to improve lin- BMC-mediated angiogenesis and vascular repair.


Assuntos
Apoptose , Células da Medula Óssea/enzimologia , Linhagem da Célula , Senescência Celular , Células Progenitoras Endoteliais/enzimologia , MicroRNAs/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Regiões 3' não Traduzidas , Fatores Etários , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Sítios de Ligação , Células da Medula Óssea/patologia , Movimento Celular , Proliferação de Células , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Regulação para Baixo , Células Progenitoras Endoteliais/patologia , Genótipo , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Neovascularização Fisiológica , Fenótipo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Transdução de Sinais , Transcriptoma , Transfecção , Proteína Supressora de Tumor p53/metabolismo
9.
ACS Nano ; 9(7): 6706-16, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26042619

RESUMO

Modulating T cell function by down-regulating specific genes using RNA interference (RNAi) holds tremendous potential in advancing targeted therapies in many immune-related disorders including cancer, inflammation, autoimmunity, and viral infections. Hematopoietic cells, in general, and primary T lymphocytes, in particular, are notoriously hard to transfect with small interfering RNAs (siRNAs). Herein, we describe a novel strategy to specifically deliver siRNAs to murine CD4(+) T cells using targeted lipid nanoparticles (tLNPs). To increase the efficacy of siRNA delivery, these tLNPs have been formulated with several lipids designed to improve the stability and efficacy of siRNA delivery. The tLNPs were surface-functionalized with anti-CD4 monoclonal antibody to permit delivery of the siRNAs specifically to CD4(+) T lymphocytes. Ex vivo, tLNPs demonstrated specificity by targeting only primary CD4(+) T lymphocytes and no other cell types. Systemic intravenous administration of these particles led to efficient binding and uptake into CD4(+) T lymphocytes in several anatomical sites including the spleen, inguinal lymph nodes, blood, and the bone marrow. Silencing by tLNPs occurs in a subset of circulating and resting CD4(+) T lymphocytes. Interestingly, we show that tLNP internalization and not endosome escape is a fundamental event that takes place as early as 1 h after systemic administration and determines tLNPs' efficacy. Taken together, these results suggest that tLNPs may open new avenues for the manipulation of T cell functionality and may help to establish RNAi as a therapeutic modality in leukocyte-associated diseases.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Inativação Gênica , Nanopartículas/metabolismo , RNA Interferente Pequeno/administração & dosagem , Animais , Linfócitos T CD4-Positivos/transplante , Células Cultivadas , Lipídeos/química , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Terapêutica com RNAi/métodos
10.
Exp Neurol ; 271: 241-50, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26099177

RESUMO

A hexanucleotide repeat expansion residing within the C9ORF72 gene represents the most common known cause of amyotrophic lateral sclerosis (ALS) and places the disease among a growing family of repeat expansion disorders. The presence of RNA foci, repeat-associated translation products, and sequestration of RNA binding proteins suggests that toxic RNA gain-of-function contributes to pathology while C9ORF72 haploinsufficiency may be an additional pathological factor. One viable therapeutic strategy for treating expansion diseases is the use of small molecule inhibitors of epigenetic modifier proteins to reactivate expanded genetic loci. Indeed, previous studies have established proof of this principle by increasing the drug-induced expression of expanded (and abnormally heterochromatinized) FMR1, FXN and C9ORF72 genes in respective patient cells. While epigenetic modifier proteins are increasingly recognized as druggable targets, there have been few screening strategies to address this avenue of drug discovery in the context of expansion diseases. Here we utilize a semi-high-throughput gene expression based screen to identify siRNAs and small molecule inhibitors of epigenetic modifier proteins that regulate C9ORF72 RNA in patient fibroblasts, lymphocytes and reprogrammed motor neurons. We found that several bromodomain small molecule inhibitors increase the expression of C9ORF72 mRNA and pre-mRNA without affecting repressive epigenetic signatures of expanded C9ORF72 alleles. These data suggest that bromodomain inhibition increases the expression of unexpanded C9ORF72 alleles and may therefore compensate for haploinsufficiency without increasing the production of toxic RNA and protein products, thereby conferring therapeutic value.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Linfócitos/metabolismo , Proteínas/genética , Trifosfato de Adenosina , Benzodiazepinas/farmacologia , Proteína C9orf72 , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Transformada , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Desoxicitidina/farmacologia , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Biblioteca Gênica , Humanos , Linfócitos/efeitos dos fármacos , Mutação/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Transfecção
11.
Circ Res ; 112(1): 152-64, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23072816

RESUMO

RATIONALE: Endothelial progenitor cells (EPCs) contribute to the regeneration of endothelium. Aging-associated senescence results in reduced number and function of EPCs, potentially contributing to increased cardiac risk, reduced angiogenic capacity, and impaired cardiac repair effectiveness. The mechanisms underlying EPC senescence are unknown. Increasing evidence supports the role of microRNAs in regulating cellular senescence. OBJECTIVE: We aimed to determine whether microRNAs regulated EPC senescence and, if so, what the underlying mechanisms are. METHODS AND RESULTS: To map the microRNA/gene expression signatures of EPC senescence, we performed microRNA profiling and microarray analysis in lineage-negative bone marrow cells from young and aged wild-type and apolipoprotein E-deficient mice. We identified 2 microRNAs, microRNA-10A* (miR-10A*), and miR-21, and their common target gene Hmga2 as critical regulators for EPC senescence. Overexpression of miR-10A* and miR-21 in young EPCs suppressed Hmga2 expression, caused EPC senescence, as evidenced by senescence-associated ß-galactosidase upregulation, decreased self-renewal potential, increased p16(Ink4a)/p19(Arf) expression, and resulted in impaired EPC angiogenesis in vitro and in vivo, resembling EPCs derived from aged mice. In contrast, suppression of miR-10A* and miR-21 in aged EPCs increased Hmga2 expression, rejuvenated EPCs, resulting in decreased senescence-associated ß-galactosidase expression, increased self-renewal potential, decreased p16(Ink4a)/p19(Arf) expression, and improved EPC angiogenesis in vitro and in vivo. Importantly, these phenotypic changes were rescued by miRNA-resistant Hmga2 cDNA overexpression. CONCLUSIONS: miR-10A* and miR-21 regulate EPC senescence via suppressing Hmga2 expression and modulation of microRNAs may represent a potential therapeutic intervention in improving EPC-mediated angiogenesis and vascular repair.


Assuntos
Senescência Celular , Células Endoteliais/metabolismo , Proteína HMGB3/metabolismo , MicroRNAs/metabolismo , Células-Tronco/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Proliferação de Células , Células Cultivadas , Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Perfilação da Expressão Gênica/métodos , Genótipo , Proteína HMGB3/genética , Membro Posterior , Isquemia/genética , Isquemia/metabolismo , Isquemia/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Transfecção , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
12.
PLoS One ; 7(12): e52106, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300597

RESUMO

MicroRNAs (miRs) are small, endogenous, non-coding RNAs that regulate the stability and/or translation of complementary mRNA targets. MiRs have emerged not only as critical modulators of normal physiologic processes, but their deregulation may significantly impact prostate and other cancers. The expression of miR-23b and miR-27b, which are encoded by the same miR cluster (miR-23b/-27b), are downregulated in metastatic, castration-resistant tumors compared to primary prostate cancer and benign tissue; however, their possible role in prostate cancer progression is unknown. We found that ectopic expression of miR-23b/-27b in two independent castration-resistant prostate cancer cell lines resulted in suppression of invasion and migration, as well as reduced survival in soft agar (a measure of anoikis). However, there was no effect of miR-23b/-27b on cell proliferation suggesting that these miRs function as metastasis (but not growth) suppressors in prostate cancer. Conversely, inhibition of miR-23b/-27b in the less aggressive androgen-dependent LNCaP prostate cancer cell line resulted in enhanced invasion and migration also without affecting proliferation. Mechanistically, we found that introduction of miR-23b/-27b in metastatic, castration-resistant prostate cancer cell lines resulted in a significant attenuation of Rac1 activity without affecting total Rac1 levels and caused increased levels of the tumor suppressor E-cadherin. Inhibition of these miRs had the opposite effect in androgen-dependent LNCaP cells. These results suggest that miR-23b/-27b are metastasis suppressors that might serve as novel biomarkers and therapeutic agents for castration-resistant disease.


Assuntos
Caderinas/metabolismo , Movimento Celular , MicroRNAs/genética , Neoplasias Hormônio-Dependentes/genética , Orquiectomia , Neoplasias da Próstata/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Apoptose , Western Blotting , Caderinas/genética , Adesão Celular , Proliferação de Células , Citometria de Fluxo , Humanos , Masculino , Neoplasias Hormônio-Dependentes/secundário , Neoplasias da Próstata/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Proteínas rac1 de Ligação ao GTP/genética
13.
J Clin Invest ; 121(6): 2401-12, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21576818

RESUMO

The continued spread of the HIV epidemic underscores the need to interrupt transmission. One attractive strategy is a topical vaginal microbicide. Sexual transmission of herpes simplex virus type 2 (HSV-2) in mice can be inhibited by intravaginal siRNA application. To overcome the challenges of knocking down gene expression in immune cells susceptible to HIV infection, we used chimeric RNAs composed of an aptamer fused to an siRNA for targeted gene knockdown in cells bearing an aptamer-binding receptor. Here, we showed that CD4 aptamer-siRNA chimeras (CD4-AsiCs) specifically suppress gene expression in CD4⁺ T cells and macrophages in vitro, in polarized cervicovaginal tissue explants, and in the female genital tract of humanized mice. CD4-AsiCs do not activate lymphocytes or stimulate innate immunity. CD4-AsiCs that knock down HIV genes and/or CCR5 inhibited HIV infection in vitro and in tissue explants. When applied intravaginally to humanized mice, CD4-AsiCs protected against HIV vaginal transmission. Thus, CD4-AsiCs could be used as the active ingredient of a microbicide to prevent HIV sexual transmission.


Assuntos
Aptâmeros de Nucleotídeos/uso terapêutico , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Colo do Útero/efeitos dos fármacos , Genes gag , Genes vif , Infecções por HIV/prevenção & controle , Macrófagos/efeitos dos fármacos , RNA Interferente Pequeno/uso terapêutico , Receptores CCR5/genética , Quimeras de Transplante/virologia , Vagina/efeitos dos fármacos , Administração Intravaginal , Animais , Aptâmeros de Nucleotídeos/administração & dosagem , Sequência de Bases , Antígenos CD4/genética , Linfócitos T CD4-Positivos/imunologia , Polaridade Celular , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Colo do Útero/virologia , Avaliação Pré-Clínica de Medicamentos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Infecções por HIV/transmissão , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Dados de Sequência Molecular , Técnicas de Cultura de Órgãos , RNA Interferente Pequeno/administração & dosagem , Especificidade da Espécie , Quimeras de Transplante/imunologia , Vagina/virologia
14.
Cancer Res ; 70(16): 6401-6, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20663901

RESUMO

MicroRNAs (miRNA) are key regulators of many important biological processes from insulin secretion and fat metabolism to cellular proliferation and differentiation. Given the critical role that these small regulatory RNAs play in biology, it is not surprising that the alteration of miRNA expression patterns can have pathogenic consequences. The association between miRNA dysregulation and pathogenesis has been most widely studied in tumorigenesis, and a large number of miRNAs have been identified whose expression levels are changed in various tumor types. Although the role that miRNAs play in the development of metastasis is more poorly defined, recent studies have begun to identify miRNAs that can regulate key steps in the metastatic cascade. This review focuses on two emerging stories, the regulation of the epithelial-to-mesenchymal transition by members of the miR-200 family, and the pleiotropic nature of the metastasis suppressor miR-31.


Assuntos
MicroRNAs/fisiologia , Neoplasias/genética , Neoplasias/patologia , Animais , Humanos , MicroRNAs/biossíntese , MicroRNAs/genética , Metástase Neoplásica
15.
Discov Med ; 9(48): 418-30, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20515610

RESUMO

The application of RNA interference-based gene silencing technologies has the potential to treat a variety of illness. Preclinical studies and some early clinical trials have already demonstrated the utility of small interfering RNAs (siRNAs) as a potential novel therapy for the treatment of cancer, viral infections, as well as a wide range of additional diseases. To be effective, an siRNA must be taken up by specific cells, enter the cytoplasm, and be loaded onto the Argonaute protein, the catalytic core of the RNA induced silencing complex (RISC) to direct the cleavage of the homologous transcripts. To meet this need, a variety of novel siRNA delivery strategies have been developed. As our understanding of the molecular mechanisms underlying the RNAi pathway has increased so has the ability to rationally design effective silencing and delivery strategies. This review will examine the latest advances in non-viral delivery of siRNA, with special reference to targeted siRNA delivery to specific target tissues and cell types in vivo in preclinical animal models.


Assuntos
Técnicas de Transferência de Genes/tendências , RNA Interferente Pequeno/metabolismo , Transporte Biológico , Endossomos/metabolismo , Humanos , Especificidade de Órgãos , RNA Interferente Pequeno/efeitos adversos
16.
Mol Cell ; 35(5): 610-25, 2009 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-19748357

RESUMO

miR-24, upregulated during terminal differentiation of multiple lineages, inhibits cell-cycle progression. Antagonizing miR-24 restores postmitotic cell proliferation and enhances fibroblast proliferation, whereas overexpressing miR-24 increases the G1 compartment. The 248 mRNAs downregulated upon miR-24 overexpression are highly enriched for DNA repair and cell-cycle regulatory genes that form a direct interaction network with prominent nodes at genes that enhance (MYC, E2F2, CCNB1, and CDC2) or inhibit (p27Kip1 and VHL) cell-cycle progression. miR-24 directly regulates MYC and E2F2 and some genes that they transactivate. Enhanced proliferation from antagonizing miR-24 is abrogated by knocking down E2F2, but not MYC, and cell proliferation, inhibited by miR-24 overexpression, is rescued by miR-24-insensitive E2F2. Therefore, E2F2 is a critical miR-24 target. The E2F2 3'UTR lacks a predicted miR-24 recognition element. In fact, miR-24 regulates expression of E2F2, MYC, AURKB, CCNA2, CDC2, CDK4, and FEN1 by recognizing seedless but highly complementary sequences.


Assuntos
Regiões 3' não Traduzidas , Ciclo Celular/genética , Proliferação de Células , Fator de Transcrição E2F2/genética , Genes cdc , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Sequências Reguladoras de Ácido Nucleico , Sequência de Bases , Sítios de Ligação , Diferenciação Celular/genética , Reparo do DNA , Bases de Dados Genéticas , Regulação para Baixo , Eritrócitos/metabolismo , Fibroblastos/metabolismo , Redes Reguladoras de Genes , Células HL-60 , Humanos , Células K562 , Macrófagos/metabolismo , Megacariócitos/metabolismo , Dados de Sequência Molecular , Interferência de RNA , RNA Mensageiro/metabolismo , Ativação Transcricional
17.
PLoS One ; 4(9): e7181, 2009 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-19787069

RESUMO

BACKGROUND: The development of metastases involves the dissociation of cells from the primary tumor to penetrate the basement membrane, invade and then exit the vasculature to seed, and colonize distant tissues. The last step, establishment of macroscopic tumors at distant sites, is the least well understood. Four isogenic mouse breast cancer cell lines (67NR, 168FARN, 4TO7, and 4T1) that differ in their ability to metastasize when implanted into the mammary fat pad are used to model the steps of metastasis. Only 4T1 forms macroscopic lung and liver metastases. Because some miRNAs are dysregulated in cancer and affect cellular transformation, tumor formation, and metastasis, we examined whether changes in miRNA expression might explain the differences in metastasis of these cells. METHODOLOGY/PRINCIPAL FINDINGS: miRNA expression was analyzed by miRNA microarray and quantitative RT-PCR in isogenic mouse breast cancer cells with distinct metastatic capabilities. 4T1 cells that form macroscopic metastases had elevated expression of miR-200 family miRNAs compared to related cells that invade distant tissues, but are unable to colonize. Moreover, over-expressing miR-200 in 4TO7 cells enabled them to metastasize to lung and liver. These findings are surprising since the miR-200 family was previously shown to promote epithelial characteristics by inhibiting the transcriptional repressor Zeb2 and thereby enhancing E-cadherin expression. We confirmed these findings in these cells. The most metastatic 4T1 cells acquired epithelial properties (high expression of E-cadherin and cytokeratin-18) compared to the less metastatic cells. CONCLUSIONS/SIGNIFICANCE: Expression of miR-200, which promotes a mesenchymal to epithelial cell transition (MET) by inhibiting Zeb2 expression, unexpectedly enhances macroscopic metastases in mouse breast cancer cell lines. These results suggest that for some tumors, tumor colonization at metastatic sites might be enhanced by MET. Therefore the epithelial nature of a tumor does not predict metastatic outcome.


Assuntos
Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Animais , Caderinas/biossíntese , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Clonagem Molecular , Epitélio/metabolismo , Feminino , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Microscopia de Fluorescência/métodos , Metástase Neoplásica , Resultado do Tratamento , Homeobox 1 de Ligação a E-box em Dedo de Zinco
18.
Expert Opin Ther Pat ; 19(4): 475-91, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19441927

RESUMO

BACKGROUND: The development of RNA interference (RNAi)-based gene silencing approaches has revolutionized biomedical research. These technologies have been applied for functional genomic studies in a variety of areas, including cancer research, by facilitating a better understanding of the mechanisms that underlie tumorigenicity and the identification of novel factors that either promote or inhibit oncogenic transformation. OBJECTIVE: These approaches have laid the groundwork for the development of a novel class of genetic therapies. Preclinical results have exposed both the unique therapeutic opportunities and challenges that are encountered in adapting these technologies for clinical applications. These themes are reflected in the patent literature that has mirrored the rise in complexity and sophistication of RNAi-based therapeutic approaches. This review focuses on the identification of potential anticancer therapeutic targets and the development of clinically relevant delivery approaches. CONCLUSIONS: Thus far, the patent landscape in the RNAi field has been dominated by a handful of key patents that describe the original identification and characterization of inhibitory double-stranded RNA molecules. Only time will tell how these original patents will hold up in the face of the development of new approaches and reagents as RNAi-based therapeutics approach transition from the bench to the clinic.


Assuntos
Inativação Gênica , Neoplasias/terapia , Interferência de RNA , Animais , Marcação de Genes/métodos , Terapia Genética/métodos , Humanos , Patentes como Assunto , RNA Interferente Pequeno/uso terapêutico
19.
Nat Struct Mol Biol ; 16(5): 492-8, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19377482

RESUMO

Terminally differentiated cells have a reduced capacity to repair double-stranded breaks, but the molecular mechanism behind this downregulation is unclear. Here we find that miR-24 is upregulated during postmitotic differentiation of hematopoietic cell lines and regulates the histone variant H2AX, a protein that has a key role in the double-stranded break response. We show that the H2AX 3' untranslated region contains conserved miR-24 binding sites that are indeed regulated by miR-24. During terminal differentiation, both H2AX mRNA and protein levels are substantially reduced by miR-24 upregulation in in vitro differentiated cells; similar diminished levels are found in primary human blood cells. miR-24-mediated suppression of H2AX renders cells hypersensitive to gamma-irradiation and genotoxic drugs, a phenotype that is fully rescued by overexpression of miR-24-insensitive H2AX. Therefore, miR-24 upregulation in postreplicative cells reduces H2AX and makes them vulnerable to DNA damage.


Assuntos
Células Sanguíneas/citologia , Células Sanguíneas/metabolismo , Diferenciação Celular , Reparo do DNA , Regulação para Baixo/genética , Histonas/genética , MicroRNAs/metabolismo , Bleomicina/farmacologia , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/efeitos da radiação , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos da radiação , Linhagem Celular , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/efeitos da radiação , Cromossomos Humanos/metabolismo , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/efeitos da radiação , Raios gama , Instabilidade Genômica/efeitos dos fármacos , Instabilidade Genômica/efeitos da radiação , Sistema Hematopoético/citologia , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/efeitos da radiação
20.
Adv Exp Med Biol ; 615: 299-329, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18437900

RESUMO

The endogenous RNA interference (RNAi) pathway regulates cellular differentiation and development using small noncoding hairpin RNAs, called microRNAs. This chapter will review the link between mammalian microRNAs and genes involved in cellular proliferation, differentiation, and apoptosis. Some microRNAs act as oncogenes or tumor suppressor genes, but the target gene networks they regulate are just beginning to be described. Cancer cells have altered atterns of microRNA expression, which can be used to identify the cell of origin and to subtype cancers. RNAi has also been used to identify novel genes involved in cellular transformation using forward genetic screening methods previously only possible in invertebrates. Possible strategies and obstacles to harnessing RNAi for cancer therapy will also be discussed.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/terapia , Interferência de RNA , RNA Mensageiro/antagonistas & inibidores , Transdução de Sinais , Animais , Humanos , Neoplasias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA