Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
NAR Cancer ; 6(1): zcae007, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38406263

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is a commonly diagnosed, aggressive non-Hodgkin's lymphoma. While R-CHOP chemoimmunotherapy is potentially curative, about 40% of DLBCL patients will fail, highlighting the need to identify biomarkers to optimize management. SAMHD1 has a dNTPase-independent role in promoting resection to facilitate DNA double-strand break (DSB) repair by homologous recombination. We evaluated the relationship of SAMHD1 levels with sensitivity to DSB-sensitizing agents in DLBCL cells and the association of SAMHD1 expression with clinical outcomes in 79 DLBCL patients treated with definitive therapy and an independent cohort dataset of 234 DLBCL patients. Low SAMHD1 expression, Vpx-mediated, or siRNA-mediated degradation/depletion in DLBCL cells was associated with greater sensitivity to doxorubicin and PARP inhibitors. On Kaplan-Meier log-rank survival analysis, low SAMHD1 expression was associated with improved overall survival (OS), which on subset analysis remained significant only in patients with advanced stage (III-IV) and moderate to high risk (2-5 International Prognostic Index (IPI)). The association of low SAMHD1 expression with improved OS remained significant on multivariate analysis independent of other adverse factors, including IPI, and was validated in an independent cohort. Our findings suggest that SAMHD1 expression mediates doxorubicin resistance and may be an important prognostic biomarker in advanced, higher-risk DLBCL patients.

2.
Int J Radiat Oncol Biol Phys ; 119(3): 957-967, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38104869

RESUMO

PURPOSE: The recently proposed Integrated Physical Optimization Intensity Modulated Proton Therapy (IPO-IMPT) framework allows simultaneous optimization of dose, dose rate, and linear energy transfer (LET) for ultra-high dose rate (FLASH) treatment planning. Finding solutions to IPO-IMPT is difficult because of computational intensiveness. Nevertheless, an inverse solution that simultaneously specifies the geometry of a sparse filter and weights of a proton intensity map is desirable for both clinical and preclinical applications. Such solutions can reduce effective biologic dose to organs at risk in patients with cancer as well as reduce the number of animal irradiations needed to derive extra biologic dose models in preclinical studies. METHODS AND MATERIALS: Unlike the initial forward heuristic, this inverse IPO-IMPT solution includes simultaneous optimization of sparse range compensation, sparse range modulation, and spot intensity. The daunting computational tasks vital to this endeavor were resolved iteratively with a distributed computing framework to enable Simultaneous Intensity and Energy Modulation and Compensation (SIEMAC). SIEMAC was demonstrated on a human patient with central lung cancer and a minipig. RESULTS: SIEMAC simultaneously improves maps of spot intensities and patient-field-specific sparse range compensators and range modulators. For the patient with lung cancer, at our maximum nozzle current of 300 nA, dose rate coverage above 100 Gy/s increased from 57% to 96% in the lung and from 93% to 100% in the heart, and LET coverage above 4 keV/µm dropped from 68% to 9% in the lung and from 26% to <1% in the heart. For a simple minipig plan, the full-width half-maximum of the dose, dose rate, and LET distributions decreased by 30%, 1.6%, and 57%, respectively, again with similar target dose coverage, thus reducing uncertainty in these quantities for preclinical studies. CONCLUSIONS: The inverse solution to IPO-IMPT demonstrated the capability to simultaneously modulate subspot proton energy and intensity distributions for clinical and preclinical studies.


Assuntos
Algoritmos , Transferência Linear de Energia , Neoplasias Pulmonares , Órgãos em Risco , Terapia com Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Terapia com Prótons/métodos , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Animais , Neoplasias Pulmonares/radioterapia , Órgãos em Risco/efeitos da radiação , Radioterapia de Intensidade Modulada/métodos , Suínos
3.
Nucleic Acids Res ; 51(15): 7972-7987, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37395399

RESUMO

DNA-dependent protein kinase (DNA-PK) plays a critical role in non-homologous end joining (NHEJ), the predominant pathway that repairs DNA double-strand breaks (DSB) in response to ionizing radiation (IR) to govern genome integrity. The interaction of the catalytic subunit of DNA-PK (DNA-PKcs) with the Ku70/Ku80 heterodimer on DSBs leads to DNA-PK activation; however, it is not known if upstream signaling events govern this activation. Here, we reveal a regulatory step governing DNA-PK activation by SIRT2 deacetylation, which facilitates DNA-PKcs localization to DSBs and interaction with Ku, thereby promoting DSB repair by NHEJ. SIRT2 deacetylase activity governs cellular resistance to DSB-inducing agents and promotes NHEJ. SIRT2 furthermore interacts with and deacetylates DNA-PKcs in response to IR. SIRT2 deacetylase activity facilitates DNA-PKcs interaction with Ku and localization to DSBs and promotes DNA-PK activation and phosphorylation of downstream NHEJ substrates. Moreover, targeting SIRT2 with AGK2, a SIRT2-specific inhibitor, augments the efficacy of IR in cancer cells and tumors. Our findings define a regulatory step for DNA-PK activation by SIRT2-mediated deacetylation, elucidating a critical upstream signaling event initiating the repair of DSBs by NHEJ. Furthermore, our data suggest that SIRT2 inhibition may be a promising rationale-driven therapeutic strategy for increasing the effectiveness of radiation therapy.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas Quinases , DNA/genética , DNA/metabolismo , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Proteína Quinase Ativada por DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Autoantígeno Ku/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinases/genética , Sirtuína 2/genética , Sirtuína 2/metabolismo , Humanos
4.
Phys Med Biol ; 68(14)2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37285847

RESUMO

Objective. The aim of this study was to investigate the feasibility of online monitoring of irradiation time (IRT) and scan time for FLASH proton radiotherapy using a pixelated semiconductor detector.Approach. Measurements of the time structure of FLASH irradiations were performed using fast, pixelated spectral detectors based on the Timepix3 (TPX3) chips with two architectures: AdvaPIX-TPX3 and Minipix-TPX3. The latter has a fraction of its sensor coated with a material to increase sensitivity to neutrons. With little or no dead time and an ability to resolve events that are closely spaced in time (tens of nanoseconds), both detectors can accurately determine IRTs as long as pulse pile-up is avoided. To avoid pulse pile-up, the detectors were placed well beyond the Bragg peak or at a large scattering angle. Prompt gamma rays and secondary neutrons were registered in the detectors' sensors and IRTs were calculated based on timestamps of the first charge carriers (beam-on) and the last charge carriers (beam-off). In addition, scan times inx,y, and diagonal directions were measured. The experiment was carried out for various setups: (i) a single spot, (ii) a small animal field, (iii) a patient field, and (iv) an experiment using an anthropomorphic phantom to demonstratein vivoonline monitoring of IRT. All measurements were compared to vendor log files.Main results. Differences between measurements and log files for a single spot, a small animal field, and a patient field were within 1%, 0.3% and 1%, respectively.In vivomonitoring of IRTs (95-270 ms) was accurate within 0.1% for AdvaPIX-TPX3 and within 6.1% for Minipix-TPX3. The scan times inx,y, and diagonal directions were 4.0, 3.4, and 4.0 ms, respectively.Significance. Overall, the AdvaPIX-TPX3 can measure FLASH IRTs within 1% accuracy, indicating that prompt gamma rays are a good surrogate for primary protons. The Minipix-TPX3 showed a somewhat higher discrepancy, likely due to the late arrival of thermal neutrons to the detector sensor and lower readout speed. The scan times (3.4 ± 0.05 ms) in the 60 mm distance ofy-direction were slightly less than (4.0 ± 0.06 ms) in the 24 mm distance ofx-direction, confirming the much faster scanning speed of the Y magnets than that of X. Diagonal scan speed was limited by the slower X magnets.


Assuntos
Terapia com Prótons , Radiometria , Radiometria/métodos , Raios gama , Terapia com Prótons/métodos , Prótons , Nêutrons
5.
Life Sci Space Res (Amst) ; 35: 1-3, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36336355

RESUMO

Concerns over the health effects of space radiation exposure currently limit the duration of deep-space travel. Effective biological countermeasures could allow humanity to break this limit, facilitating human exploration and sustained presence on the Moon, Mars, or elsewhere in the Solar System. In this issue, we present a collection of 20 articles, each providing perspectives or data relevant to the implementation of a countermeasure discovery and development program. Topics include agency and drug developer perspectives, the prospects for repurposing of existing drugs or other agents, and the potential for adoption of new technologies, high-throughput screening, novel animal or microphysiological models, and alternative ground-based radiation sources. Long-term goals of a countermeasures program include reduction in the risk of radiation-exposure induced cancer death to an acceptable level and reduction in risks to the brain, cardiovascular system, and other organs.


Assuntos
Exposição à Radiação , Voo Espacial , Animais , Humanos , Exposição à Radiação/efeitos adversos , Lua
6.
Life Sci Space Res (Amst) ; 35: 163-169, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36336362

RESUMO

Implementation of a systematic program for galactic cosmic radiation (GCR) countermeasure discovery will require convenient access to ground-based space radiation analogs. The current gold standard approach for GCR simulation is to use a particle accelerator for sequential irradiation with ion beams representing different GCR components. This has limitations, particularly for studies of non-acute responses, strategies that require robotic instrumentation, or implementation of complex in vitro models that are emerging as alternatives to animal experimentation. Here we explore theoretical and practical issues relating to a different approach to provide a high-LET radiation field for space radiation countermeasure discovery, based on use of compact portable sources to generate neutron-induced charged particles. We present modeling studies showing that DD and DT neutron generators, as well as an AmBe radionuclide-based source, generate charged particles with a linear energy transfer (LET) distribution that, within a range of biological interest extending from about 10 to 200 keV/µm, resembles the LET distribution of reference GCR radiation fields experienced in a spacecraft or on the lunar surface. We also demonstrate the feasibility of using DD neutrons to induce 53BP1 DNA double-strand break repair foci in the HBEC3-KT line of human bronchial epithelial cells, which are widely used for studies of lung carcinogenesis. The neutron-induced foci are larger and more persistent than X ray-induced foci, consistent with the induction of complex, difficult-to-repair DNA damage characteristic of exposure to high-LET (>10 keV/µm) radiation. We discuss limitations of the neutron approach, including low fluence in the low LET range (<10 keV/µm) and the absence of certain long-range features of high charge and energy particle tracks. We present a concept for integration of a compact portable source with a multiplex microfluidic in vitro culture system, and we discuss a pathway for further validation of the use of compact portable sources for countermeasure discovery.


Assuntos
Radiação Cósmica , Animais , Humanos , Transferência Linear de Energia , Radiação Ionizante , Reparo do DNA , Dano ao DNA
7.
NAR Cancer ; 4(1): zcac003, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35252865
8.
Life Sci Space Res (Amst) ; 28: 11-17, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33612174

RESUMO

Exosomes are extracellular vesicles that mediate transport of nucleic acids, proteins, and other molecules. Prior work has implicated exosomes in the transmission of radiation nontargeted effects. Here we investigate the ability of energetic heavy ions, representative of species found in galactic cosmic rays, to stimulate exosome release from human bronchial epithelial cells in vitro. Immortalized human bronchial epithelial cells (HBEC3-KT F25F) were irradiated with 1.0 Gy of high linear energy transfer (LET) 48Ti, 28Si, or 16O ions, or with 10 Gy of low-LET reference γ-rays, and extracellular vesicles were collected from conditioned media. Preparations were characterized by single particle tracking analysis, transmission electron microscopy, and immunoblotting for the exosomal marker, TSG101. Based on TSG101 levels, irradiation with high-LET ions, but not γ-rays, stimulated exosome release by about 4-fold, relative to mock-irradiated controls. The exosome-enriched vesicle preparations contained pro-inflammatory damage-associated molecular patterns, including HSP70 and calreticulin. Additionally, miRNA profiling was performed for vesicular RNAs using NanoString technology. The miRNA profile was skewed toward a small number of species that have previously been shown to be involved in cancer initiation and progression, including miR-1246, miR-1290, miR-23a, and miR-205. Additionally, a set of 24 miRNAs was defined as modestly over-represented in preparations from HZE ion-irradiated versus other cells. Gene set enrichment analysis based on the over-represented miRNAs showed highly significant association with nonsmall cell lung and other cancers.


Assuntos
Exossomos/efeitos da radiação , Vesículas Extracelulares/efeitos da radiação , Radiação Ionizante , Calreticulina/metabolismo , Linhagem Celular Transformada , Células Epiteliais/efeitos da radiação , Vesículas Extracelulares/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Transferência Linear de Energia , MicroRNAs
9.
Int J Radiat Oncol Biol Phys ; 108(1): 104-114, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32561502

RESUMO

PURPOSE: To investigate the ability of radiation to stimulate exosome release from melanoma cells and to characterize the resulting exosome-containing vesicle preparations for their ability to promote a host antitumor immune response. MATERIALS AND METHODS: Cultured B16F10 murine melanoma cells or tumors were irradiated, and secreted extracellular vesicles were isolated and characterized. The exosome-containing vesicle preparations were injected into fresh tumors in syngeneic mice, and tumor growth and infiltrating T cells and natural killer (NK) cells were characterized. RESULTS: Irradiation stimulated exosome release from B16F10 murine melanoma cells. Exosome preparations from irradiated cell culture supernatants were biologically active, as demonstrated by uptake into recipient cells and by the ability to induce dendritic cell maturation and activation in vitro. Intratumoral injection significantly delayed tumor growth in vivo, whereas injection of similar preparations from non irradiated cells had no effect. The antitumor effect was correlated to an increase in interferon gamma-producing tumor-infiltrating NK cells. Pretreatment of the host mice with anti-NK cell antibodies abolished the effect, whereas pretreatment with anti-CD8+ T-cell antibodies did not. CONCLUSION: Exosomes from irradiated cells, or synthetic mimics, might provide an effective strategy for potentiation of NK cell-mediated host antitumor immunity.


Assuntos
Exossomos/patologia , Células Matadoras Naturais/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Feminino , Melanoma Experimental/radioterapia , Camundongos , Camundongos Endogâmicos C57BL
11.
Artif Cells Nanomed Biotechnol ; 47(1): 2196-2204, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31159605

RESUMO

Double-strand break (DSB) repair foci are important therapeutic targets. Here we describe platforms for delivery of macromolecules, nanomaterials and nanomedicines to repair foci. The strategy is based on the high affinity of the human 53BP1 protein for modified chromatin present at sites of DNA damage. As proof of concept, we created, expressed, and purified an engineered fragment of 53BP1 and coupled it to fluorescent streptavidin, a model cargo with no intrinsic affinity for repair foci. This binary complex was in turn coupled to the iron carrier protein, transferrin, which engages a high-affinity cell surface receptor. In a different version of the complex, transferrin was omitted and a protein transduction domain was incorporated directly into the primary structure of the 53BP1. These complexes were efficiently taken up into human osteosarcoma cells and synchronously released from endocytic vesicles by brief exposure to far-red light in the presence of the photosensitizer, disulfonated aluminum phthalocyanine. Upon release, the streptavidin cargo entered the nucleus and was recruited to repair foci. 53BP1-based platforms provide a method for targeted, temporally controlled delivery of macromolecular agents to sites of double-strand break repair. With the delivery platforms, we are capable to visualize, modify and redirect DSB repair pathways by coupling various nanomaterials to study machinery or manipulate for therapy purpose in the future.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Portadores de Fármacos/química , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/química , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Citoplasma/metabolismo , Corantes Fluorescentes/química , Humanos , Transporte Proteico
12.
NAR Cancer ; 1(1): zcz001, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34316680
13.
Nucleic Acids Res ; 46(9): 4515-4532, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29522130

RESUMO

Base excision repair (BER), which is initiated by DNA N-glycosylase proteins, is the frontline for repairing potentially mutagenic DNA base damage. The NTHL1 glycosylase, which excises DNA base damage caused by reactive oxygen species, is thought to be a tumor suppressor. However, in addition to NTHL1 loss-of-function mutations, our analysis of cancer genomic datasets reveals that NTHL1 frequently undergoes amplification or upregulation in some cancers. Whether NTHL1 overexpression could contribute to cancer phenotypes has not yet been explored. To address the functional consequences of NTHL1 overexpression, we employed transient overexpression. Both NTHL1 and a catalytically-dead NTHL1 (CATmut) induce DNA damage and genomic instability in non-transformed human bronchial epithelial cells (HBEC) when overexpressed. Strikingly, overexpression of either NTHL1 or CATmut causes replication stress signaling and a decrease in homologous recombination (HR). HBEC cells that overexpress NTHL1 or CATmut acquire the ability to grow in soft agar and exhibit loss of contact inhibition, suggesting that a mechanism independent of NTHL1 catalytic activity contributes to acquisition of cancer-related cellular phenotypes. We provide evidence that NTHL1 interacts with the multifunctional DNA repair protein XPG suggesting that interference with HR is a possible mechanism that contributes to acquisition of early cellular hallmarks of cancer.


Assuntos
Transformação Celular Neoplásica , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Instabilidade Genômica , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/enzimologia , Dano ao DNA , Replicação do DNA , Desoxirribonuclease (Dímero de Pirimidina)/genética , Células Epiteliais/enzimologia , Humanos , Neoplasias Pulmonares/enzimologia , Mutação , Mucosa Respiratória/citologia , Mucosa Respiratória/enzimologia
14.
Cell Rep ; 20(8): 1921-1935, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28834754

RESUMO

DNA double-strand break (DSB) repair by homologous recombination (HR) is initiated by CtIP/MRN-mediated DNA end resection to maintain genome integrity. SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection, and mutations are associated with Aicardi-Goutières syndrome and cancer. We show that SAMHD1 has a dNTPase-independent function in promoting DNA end resection to facilitate DSB repair by HR. SAMHD1 deficiency or Vpx-mediated degradation causes hypersensitivity to DSB-inducing agents, and SAMHD1 is recruited to DSBs. SAMHD1 complexes with CtIP via a conserved C-terminal domain and recruits CtIP to DSBs to facilitate end resection and HR. Significantly, a cancer-associated mutant with impaired CtIP interaction, but not dNTPase-inactive SAMHD1, fails to rescue the end resection impairment of SAMHD1 depletion. Our findings define a dNTPase-independent function for SAMHD1 in HR-mediated DSB repair by facilitating CtIP accrual to promote DNA end resection, providing insight into how SAMHD1 promotes genome integrity.


Assuntos
Reparo do DNA por Junção de Extremidades , Recombinação Homóloga , Proteína 1 com Domínio SAM e Domínio HD/genética , Quebras de DNA de Cadeia Dupla , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Proteína 1 com Domínio SAM e Domínio HD/deficiência , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Transfecção
15.
Nucleic Acids Res ; 45(4): 1848-1859, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-27924002

RESUMO

A complex of two related mammalian proteins, SFPQ and NONO, promotes DNA double-strand break repair via the canonical nonhomologous end joining (c-NHEJ) pathway. However, its mechanism of action is not fully understood. Here we describe an improved SFPQ•NONO-dependent in vitro end joining assay. We use this system to demonstrate that the SFPQ•NONO complex substitutes in vitro for the core c-NHEJ factor, XLF. Results are consistent with a model where SFPQ•NONO promotes sequence-independent pairing of DNA substrates, albeit in a way that differs in detail from XLF. Although SFPQ•NONO and XLF function redundantly in vitro, shRNA-mediated knockdown experiments indicate that NONO and XLF are both required for efficient end joining and radioresistance in cell-based assays. In addition, knockdown of NONO sensitizes cells to the interstrand crosslinking agent, cisplatin, whereas knockdown of XLF does not, and indeed suppresses the effect of NONO deficiency. These findings suggest that each protein has one or more unique activities, in addition to the DNA pairing revealed in vitro, that contribute to DNA repair in the more complex cellular milieu. The SFPQ•NONO complex contains an RNA binding domain, and prior work has demonstrated diverse roles in RNA metabolism. It is thus plausible that the additional repair function of NONO, revealed in cell-based assays, could involve RNA interaction.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Fatores de Transcrição de Octâmero/metabolismo , Fator de Processamento Associado a PTB/metabolismo , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular , Sobrevivência Celular/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Epistasia Genética , Humanos , Proteínas Associadas à Matriz Nuclear/química , Proteínas Associadas à Matriz Nuclear/genética , Fatores de Transcrição de Octâmero/química , Fatores de Transcrição de Octâmero/genética , Fator de Processamento Associado a PTB/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética
16.
Life Sci Space Res (Amst) ; 9: 19-47, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27345199

RESUMO

Robust predictive models are essential to manage the risk of radiation-induced carcinogenesis. Chronic exposure to cosmic rays in the context of the complex deep space environment may place astronauts at high cancer risk. To estimate this risk, it is critical to understand how radiation-induced cellular stress impacts cell fate decisions and how this in turn alters the risk of carcinogenesis. Exposure to the heavy ion component of cosmic rays triggers a multitude of cellular changes, depending on the rate of exposure, the type of damage incurred and individual susceptibility. Heterogeneity in dose, dose rate, radiation quality, energy and particle flux contribute to the complexity of risk assessment. To unravel the impact of each of these factors, it is critical to identify sensitive biomarkers that can serve as inputs for robust modeling of individual risk of cancer or other long-term health consequences of exposure. Limitations in sensitivity of biomarkers to dose and dose rate, and the complexity of longitudinal monitoring, are some of the factors that increase uncertainties in the output from risk prediction models. Here, we critically evaluate candidate early and late biomarkers of radiation exposure and discuss their usefulness in predicting cell fate decisions. Some of the biomarkers we have reviewed include complex clustered DNA damage, persistent DNA repair foci, reactive oxygen species, chromosome aberrations and inflammation. Other biomarkers discussed, often assayed for at longer points post exposure, include mutations, chromosome aberrations, reactive oxygen species and telomere length changes. We discuss the relationship of biomarkers to different potential cell fates, including proliferation, apoptosis, senescence, and loss of stemness, which can propagate genomic instability and alter tissue composition and the underlying mRNA signatures that contribute to cell fate decisions. Our goal is to highlight factors that are important in choosing biomarkers and to evaluate the potential for biomarkers to inform models of post exposure cancer risk. Because cellular stress response pathways to space radiation and environmental carcinogens share common nodes, biomarker-driven risk models may be broadly applicable for estimating risks for other carcinogens.


Assuntos
Biomarcadores/metabolismo , Radiação Cósmica/efeitos adversos , Neoplasias Induzidas por Radiação/diagnóstico , Relação Dose-Resposta à Radiação , Estudos de Avaliação como Assunto , Humanos , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/metabolismo , Medição de Risco
17.
Life Sci Space Res (Amst) ; 8: 38-51, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26948012

RESUMO

Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation.


Assuntos
Radiação Cósmica , Laboratórios , Radiobiologia , Pesquisa , Estados Unidos , United States National Aeronautics and Space Administration
18.
BMC Cancer ; 16: 55, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26847345

RESUMO

BACKGROUND: Transgelin is an actin-binding protein that promotes motility in normal cells. Although the role of transgelin in cancer is controversial, a number of studies have shown that elevated levels correlate with aggressive tumor behavior, advanced stage, and poor prognosis. Here we sought to determine the role of transgelin more directly by determining whether experimental manipulation of transgelin levels in colorectal cancer (CRC) cells led to changes in metastatic potential in vivo. METHODS: Isogenic CRC cell lines that differ in transgelin expression were characterized using in vitro assays of growth and invasiveness and a mouse tail vein assay of experimental metastasis. Downstream effects of transgelin overexpression were investigated by gene expression profiling and quantitative PCR. RESULTS: Stable overexpression of transgelin in RKO cells, which have low endogenous levels, led to increased invasiveness, growth at low density, and growth in soft agar. Overexpression also led to an increase in the number and size of lung metastases in the mouse tail vein injection model. Similarly, attenuation of transgelin expression in HCT116 cells, which have high endogenous levels, decreased metastases in the same model. Investigation of mRNA expression patterns showed that transgelin overexpression altered the levels of approximately 250 other transcripts, with over-representation of genes that affect function of actin or other cytoskeletal proteins. Changes included increases in HOOK1, SDCCAG8, ENAH/Mena, and TNS1 and decreases in EMB, BCL11B, and PTPRD. CONCLUSIONS: Increases or decreases in transgelin levels have reciprocal effects on tumor cell behavior, with higher expression promoting metastasis. Chronic overexpression influences steady-state levels of mRNAs for metastasis-related genes.


Assuntos
Movimento Celular/genética , Neoplasias Colorretais/genética , Proteínas dos Microfilamentos/biossíntese , Proteínas Musculares/biossíntese , Metástase Neoplásica , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/genética , Células HCT116 , Humanos , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas Musculares/genética , RNA Mensageiro/biossíntese
19.
Cell Rep ; 14(6): 1435-1447, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26854234

RESUMO

The ataxia telangiectasia-mutated and Rad3-related (ATR) kinase checkpoint pathway maintains genome integrity; however, the role of the sirtuin 2 (SIRT2) acetylome in regulating this pathway is not clear. We found that deacetylation of ATR-interacting protein (ATRIP), a regulatory partner of ATR, by SIRT2 potentiates the ATR checkpoint. SIRT2 interacts with and deacetylates ATRIP at lysine 32 (K32) in response to replication stress. SIRT2 deacetylation of ATRIP at K32 drives ATR autophosphorylation and signaling and facilitates DNA replication fork progression and recovery of stalled replication forks. K32 deacetylation by SIRT2 further promotes ATRIP accumulation to DNA damage sites and binding to replication protein A-coated single-stranded DNA (RPA-ssDNA). Collectively, these results support a model in which ATRIP deacetylation by SIRT2 promotes ATR-ATRIP binding to RPA-ssDNA to drive ATR activation and thus facilitate recovery from replication stress, outlining a mechanism by which the ATR checkpoint is regulated by SIRT2 through deacetylation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Pontos de Checagem do Ciclo Celular/genética , Replicação do DNA , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Proteína de Replicação A/genética , Sirtuína 2/genética , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Fosforilação , Ligação Proteica , Proteína de Replicação A/metabolismo , Transdução de Sinais , Sirtuína 2/metabolismo
20.
Radiat Res ; 184(3): 249-58, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26284422

RESUMO

Cell populations that have been exposed to high-charge and energy (HZE) particle radiation, and then challenged by expression of a rare-cutting nuclease, show an increased frequency of deletions and translocations originating at the enzyme cut sites. Here, we examine whether this effect also occurs in nonirradiated cells that have been co-cultured with irradiated cells. Human cells were irradiated with 0.3-1.0 Gy of either 600 MeV/u (56)Fe or 1,000 MeV/u (48)Ti ions or with 0.3-3.0 Gy of 320 kV X rays. These were co-cultured with I-SceI-expressing reporter cells at intervals up to 21 days postirradiation. Co-culture with HZE-irradiated cells led to an increase in the frequency of I-SceI-stimulated translocations and deletions in the nonirradiated cells. The effect size was similar to that seen previously in directly irradiated populations (maximum effect in bystander cells of 1.7- to 4-fold depending on ion and end point). The effect was not observed when X-ray-irradiated cells were co-cultured with nonirradiated cells, but was correlated with an increase in γ-H2AX foci-positive cells in the nonirradiated population, suggesting the presence of genomic stress. Transcriptional profiling of a directly irradiated cell population showed that many genes for cytokines and other secretory proteins were persistently upregulated, but their induction was not well correlated with functional effects on repair in co-cultured cells, suggesting that this transcriptional response alone is not sufficient to evoke the effect. The finding that HZE-irradiated cells influence the DNA double-strand break repair fidelity in their nonirradiated neighbors has implications for risk in the space radiation environment.


Assuntos
Radiação Cósmica , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Efeito Espectador , Linhagem Celular Tumoral , Técnicas de Cocultura , Reparo do DNA , Perfilação da Expressão Gênica , Humanos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA