Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1238132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781389

RESUMO

Introduction: In the course of tuberculosis (TB), the level of major acute phase protein, namely serum amyloid A (hSAA-1), increases up to a hundredfold in the pleural fluids of infected individuals. Tubercle bacilli infecting the human host can be opsonized by hSAA-1, which affects bacterial entry into human macrophages and their intracellular multiplication. Methods: We applied global RNA sequencing to evaluate the functional response of human monocyte-derived macrophages (MDMs), isolated from healthy blood donors, under elevated hSAA-1 conditions and during infection with nonopsonized and hSAA-1-opsonized Mycobacterium tuberculosis (Mtb). In the same infection model, we also examined the functional response of mycobacteria to the intracellular environment of macrophages in the presence and absence of hSAA-1. The RNASeq analysis was validated using qPCR. The functional response of MDMs to hSAA-1 and/or tubercle bacilli was also evaluated for selected cytokines at the protein level by applying the Milliplex system. Findings: Transcriptomes of MDMs cultured in the presence of hSAA-1 or infected with Mtb showed a high degree of similarity for both upregulated and downregulated genes involved mainly in processes related to cell division and immune response, respectively. Among the most induced genes, across both hSAA-1 and Mtb infection conditions, CXCL8, CCL15, CCL5, IL-1ß, and receptors for IL-7 and IL-2 were identified. We also observed the same pattern of upregulated pro-inflammatory cytokines (TNFα, IL-6, IL-12, IL-18, IL-23, and IL-1) and downregulated anti-inflammatory cytokines (IL-10, TGFß, and antimicrobial peptide cathelicidin) in the hSAA-1 treated-MDMs or the phagocytes infected with tubercle bacilli. At this early stage of infection, Mtb genes affected by the inside microenvironment of MDMs are strictly involved in iron scavenging, adaptation to hypoxia, low pH, and increasing levels of CO2. The genes for the synthesis and transport of virulence lipids, but not cholesterol/fatty acid degradation, were also upregulated. Conclusion: Elevated serum hSAA-1 levels in tuberculosis enhance the response of host phagocytes to infection, including macrophages that have not yet been in contact with mycobacteria. SAA induces antigen processing and presentation processes by professional phagocytes reversing the inhibition caused by Mtb infection.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Proteína Amiloide A Sérica/metabolismo , Macrófagos , Citocinas/metabolismo
2.
Cells ; 10(12)2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34943984

RESUMO

Mycobacterium tuberculosis (Mtb) is an intracellular pathogenic bacterium and the causative agent of tuberculosis. This disease is one of the most ancient and deadliest bacterial infections, as it poses major health, social and economic challenges at a global level, primarily in low- and middle-income countries. The lack of an effective vaccine, the long and expensive drug therapy, and the rapid spread of drug-resistant strains of Mtb have led to the re-emergence of tuberculosis as a global pandemic. Here, we assessed the in vitro activity of new imidazole-thiosemicarbazide derivatives (ITDs) against Mtb infection and their effects on mycobacterial biofilm formation. Cytotoxicity studies of the new compounds in cell lines and human monocyte-derived macrophages (MDMs) were performed. The anti-Mtb activity of ITDs was evaluated by determining minimal inhibitory concentrations of resazurin, time-kill curves, bacterial intracellular growth and the effect on biofilm formation. Mutation frequency and whole-genome sequencing of mutants that were resistant to ITDs were performed. The antimycobacterial potential of ITDs with the ability to penetrate Mtb-infected human macrophages and significantly inhibit the intracellular growth of tubercle bacilli and suppress Mtb biofilm formation was observed.


Assuntos
Imidazóis/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Semicarbazidas/farmacologia , Tuberculose/tratamento farmacológico , Antituberculosos , Biofilmes/efeitos dos fármacos , Linhagem Celular , Humanos , Imidazóis/química , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/patogenicidade , Tuberculose/microbiologia , Tuberculose/patologia
3.
Cells ; 10(5)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065319

RESUMO

As a very successful pathogen with outstanding adaptive properties, Mycobacterium tuberculosis (Mtb) has developed a plethora of sophisticated mechanisms to subvert host defenses and effectively enter and replicate in the harmful environment inside professional phagocytes, namely, macrophages. Here, we demonstrated the binding interaction of Mtb with a major human acute phase protein, namely, serum amyloid A (SAA1), and identified AtpA (Rv1308), ABC (Rv2477c), EspB (Rv3881c), TB 18.6 (Rv2140c), and ThiC (Rv0423c) membrane proteins as mycobacterial effectors responsible for the pathogen-host protein interplay. SAA1-opsonization of Mtb prior to the infection of human macrophages favored bacterial entry into target phagocytes accompanied by a substantial increase in the load of intracellularly multiplying and surviving bacteria. Furthermore, binding of human SAA1 by Mtb resulted in the up- or downregulation of the transcriptional response of tubercle bacilli. The most substantial changes were related to the increased expression level of the genes of two operons encoding mycobacterial transporter systems, namely, mmpL5/mmpS5 (rv0676c), and rv1217c, rv1218c. Therefore, we postulate that during infection, Mtb-SAA1 binding promotes the infection of host macrophages by tubercle bacilli and modulates the functional response of the pathogen.


Assuntos
Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Mycobacterium tuberculosis/fisiologia , Proteína Amiloide A Sérica/metabolismo , Transcriptoma , Tuberculose/microbiologia , Proteínas de Bactérias/genética , Humanos , Macrófagos/metabolismo , Tuberculose/metabolismo
4.
Cells ; 10(5)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064944

RESUMO

Mycobacteria exploit at least two independent global systems in response to DNA damage: the LexA/RecA-dependent SOS response and the PafBC-regulated pathway. Intracellular pathogens, such as Mycobacterium tuberculosis, are exposed to oxidative and nitrosative stress during the course of infection while residing inside host macrophages. The current understanding of RecA-independent responses to DNA damage is based on the saprophytic model of Mycobacterium smegmatis, a free-living and nonpathogenic mycobacterium. The aim of the present study was to identify elements of RecA-independent responses to DNA damage in pathogenic intracellular mycobacteria. With the help of global transcriptional profiling, we were able to dissect RecA-dependent and RecA-independent pathways. We profiled the DNA damage responses of an M. tuberculosis strain lacking the recA gene, a strain with an undetectable level of the PafBC regulatory system, and a strain with both systems tuned down simultaneously. RNA-Seq profiling was correlated with the evaluation of cell survival in response to DNA damage to estimate the relevance of each system to the overall sensitivity to genotoxic agents. We also carried out whole-cell proteomics analysis of the M. tuberculosis strains in response to mitomycin C. This approach highlighted that LexA, a well-defined key element of the SOS system, is proteolytically inactivated during RecA-dependent DNA repair, which we found to be transcriptionally repressed in response to DNA-damaging agents in the absence of RecA. Proteomics profiling revealed that AlkB was significantly overproduced in the ΔrecA pafBCCRISPRi/dCas9 strain and that Holliday junction resolvase RuvX was a DNA damage response factor that was significantly upregulated regardless of the presence of functional RecA and PafBC systems, thus falling into a third category of DNA damage factors: RecA- and PafBC-independent. While invisible to the mass spectrometer, the genes encoding alkA, dnaB, and dnaE2 were significantly overexpressed in the ΔrecA pafBCCRISPRi/dCas9 strain at the transcript level.


Assuntos
Mitomicina/farmacologia , Mycobacterium tuberculosis/metabolismo , Recombinases Rec A/metabolismo , Proteínas de Bactérias/metabolismo , Dano ao DNA , Reparo do DNA , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Humanos , Macrófagos/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Proteômica , Serina Endopeptidases/metabolismo , Transcrição Gênica , Ativação Transcricional , Tuberculose/microbiologia
5.
Genes (Basel) ; 12(4)2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918798

RESUMO

The mycobacterial nonhomologous end-joining pathway (NHEJ) involved in double-strand break (DSB) repair consists of the multifunctional ATP-dependent ligase LigD and the DNA bridging protein Ku. The other ATP-dependent ligases LigC and AEP-primase PrimC are considered as backup in this process. The engagement of LigD, LigC, and PrimC in the base excision repair (BER) process in mycobacteria has also been postulated. Here, we evaluated the sensitivity of Mycolicibacterium smegmatis mutants defective in the synthesis of Ku, Ku-LigD, and LigC1-LigC2-PrimC, as well as mutants deprived of all these proteins to oxidative and nitrosative stresses, with the most prominent effect observed in mutants defective in the synthesis of Ku protein. Mutants defective in the synthesis of LigD or PrimC/LigC presented a lower frequency of spontaneous mutations than the wild-type strain or the strain defective in the synthesis of Ku protein. As identified by whole-genome sequencing, the most frequent substitutions in all investigated strains were T→G and A→C. Double substitutions, as well as insertions of T or CG, were exclusively identified in the strains carrying functional Ku and LigD proteins. On the other hand, the inactivation of Ku/LigD increased the efficiency of the deletion of G in the mutant strain.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , DNA Primase/metabolismo , Ligases/metabolismo , Taxa de Mutação , Mycobacterium/genética , Estresse Oxidativo , Proteínas de Bactérias/genética , DNA Primase/genética , Ligases/genética , Mycobacterium/crescimento & desenvolvimento , Mycobacterium/metabolismo
6.
Genes (Basel) ; 11(10)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003314

RESUMO

ATP-binding cassette sub-family G member 2 (ABCG2), also known as breast cancer resistance protein (BCRP), is one of the key efflux ATP-binding cassette (ABC) transporters of xenobiotics, their metabolites and endogenous compounds such as urate. Some of its genetic variants have been found to influence protein functioning, resulting in serious clinical implications concerning chemotherapy response, as well as gout or blood group phenotype Jr(a-). Previous reports have suggested that the frequencies of certain crucial polymorphisms, such as c.34G>A (p.Val12Met) and c.421C>A (p.Gln141Lys) differ significantly between the Polish population and other Caucasian populations. Thus, to clarify this issue, the present study performs a complete analysis of the genetic variation of ABCG2 coding sequence in the Polish population. The genetic variation in 14 out of 15 coding exons of the ABCG2 gene, as well as their flanking intron sequences, were examined among 190 healthy representatives of the Polish population using scanning with High Resolution Melting (HRM). HRM scanning revealed 17 polymorphisms: eight in the exons (including five missense variants and one point-nonsense mutation) and nine in the intron sequences (eight single nucleotide polymorphisms (SNPs) and one deletion variant). These included variants correlating with the presence of gout and phenotype Jr(a-). Linkage disequilibrium, haplotype blocks and haplotype analyses were also performed. The frequencies of the most common polymorphisms in the Polish population did not differ significantly to those observed for other Caucasian populations, but demonstrated divergence from non-Caucasian populations. We hope that our findings may be helpful for other researchers and clinicians, evaluating the pharmacogenetic role of ABCG2.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Etnicidade/genética , Predisposição Genética para Doença , Genética Populacional , Proteínas de Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Gota/epidemiologia , Gota/genética , Voluntários Saudáveis , Humanos , Desequilíbrio de Ligação , Polônia/epidemiologia
7.
ACS Infect Dis ; 6(2): 324-337, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31860799

RESUMO

The prevalence of pulmonary infections due to nontuberculous mycobacteria such as Mycobacterium abscessus has been increasing and surpassing tuberculosis (TB) in some industrialized countries. Because of intrinsic resistance to most antibiotics that drastically limits conventional chemotherapeutic treatment options, new anti-M. abscessus therapeutics are urgently needed against this emerging pathogen. Extensive screening of a library of benzimidazole derivatives that were previously shown to be active against Mycobacterium tuberculosis led to the identification of a lead compound exhibiting very potent in vitro activity against a wide panel of M. abscessus clinical strains. Designated EJMCh-6, this compound, a 2-(2-cyclohexylethyl)-5,6-dimethyl-1H-benzo[d]imidazole), also exerted very strong activity against intramacrophage-residing M. abscessus. Moreover, the treatment of infected zebrafish embryos with EJMCh-6 was correlated with significantly increased embryo survival and a decrease in the bacterial burden as compared to those for untreated fish. Insights into the mechanism of action were inferred from the generation of spontaneous benzimidazole-resistant strains and the identification of a large set of missense mutations in MmpL3, the mycolic acid transporter in mycobacteria. Overexpression of the mutated mmpL3 alleles in a susceptible M. abscessus strain was associated with high resistance levels to EJMCh-6 and to other known MmpL3 inhibitors. Mapping the mutations conferring resistance on an MmpL3 three-dimensional homology model defined a potential EJMCh-6-binding cavity. These data emphasize a yet unexploited chemical structure class against M. abscessus with promising translational development for the treatment of M. abscessus lung diseases.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Benzimidazóis/química , Benzimidazóis/farmacologia , Mycobacterium abscessus/efeitos dos fármacos , Animais , Antituberculosos/química , Proteínas de Bactérias/genética , Transporte Biológico , Farmacorresistência Bacteriana/genética , Humanos , Pneumopatias/tratamento farmacológico , Pneumopatias/microbiologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Microbiana , Mutação , Infecções por Mycobacterium não Tuberculosas/microbiologia , Relação Estrutura-Atividade , Células THP-1 , Tuberculose/microbiologia , Peixe-Zebra/microbiologia , Peixe-Zebra/fisiologia
8.
Mediators Inflamm ; 2019: 2373791, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31871425

RESUMO

This study tested the hypothesis that Mycobacterium tuberculosis (Mtb) uses a cholesterol oxidase enzyme (ChoD) to suppress a toll-like receptor type 2- (TLR2-) dependent signalling pathway to modulate macrophages' immune response. We investigated the impact of Mtb possessing or lacking ChoD as well as TBChoD recombinant protein obtained from Mtb on the expression and activation of two key intracellular proteins involved in TLR2 signalling in human macrophages. Finally, the involvement of TLR2-related signalling proteins in an inflammatory/immunosuppressive response of macrophages to Mtb was evaluated. We demonstrate that wild-type Mtb but not the ∆choD mutant decreased the cytosolic IRAK4 and TRAF6 protein levels while strongly enhancing IRAK4 and TRAF6 mRNA levels in macrophages. Our data show that the TLR2 present on the surface of macrophages are involved in disturbing the signalling pathway by wild-type Mtb. Moreover, recombinant TBChoD effectively decreased the cytosolic level of TRAF6 and lowered the phosphorylation of IRAK4, which strongly confirm an involvement of cholesterol oxidase in affecting the TLR2-related pathway by Mtb. Wild-type Mtb induced an immunosuppressive response of macrophages in an IRAK4- and TRAF6-dependent manner as measured by interleukin 10 production. In conclusion, ChoD is a virulence factor that enables Mtb to disturb the TLR2-related signalling pathway in macrophages and modulate their response.


Assuntos
Colesterol Oxidase/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Mycobacterium tuberculosis/enzimologia , Receptor 2 Toll-Like/metabolismo , Colesterol Oxidase/genética , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Células THP-1 , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 2 Toll-Like/genética
9.
Vet Parasitol ; 254: 82-94, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29657017

RESUMO

The aim of this study was to evaluate the immunogenic and immunoprotective activities and to determine the neuroprotective capacity of the tetravalent vaccine containing selected recombinant T. gondii antigens (ROP2 + ROP4 + SAG1 + MAG1) administered with safe adjuvants (MPL and alum) using male and female inbred mice. The tested antigenic combination provided partial protection against brain cyst formation, especially in males (reduction in cyst burden by 72%). The decrease in cyst burden was observed for the whole brain as well as for specified brain regions associated with natural defensive behaviors, emotion processing and integration of motor and sensory stimuli. The vaccine triggered a strong, specific immune response, regardless of sex, which was characterized by the antigen-specific in vitro synthesis of cytokines (IL-2, IFN-γ and IL-10) and in vivo production of systemic IgG1 and IgG2a immunoglobulins. Immunization prior to the parasite challenge seemed to influence T. gondii - associated behavioral and neurochemical changes, although the impact of vaccination strongly depended on sex and time post-infection. Interestingly, in the vaccinated and T. gondii infected mice there was a significant delay in the parasite-induced loss of aversion toward cat smell (cats are the definitive hosts of the parasite). The regained attraction toward feline scent in vaccinated males, observed during chronic parasite invasion, correlated with the increase in the dopamine metabolism.


Assuntos
Vacinas Protozoárias/farmacologia , Toxoplasma/imunologia , Toxoplasmose Animal/prevenção & controle , Adjuvantes Imunológicos/farmacologia , Compostos de Alúmen/farmacologia , Animais , Antígenos de Protozoários/imunologia , Feminino , Masculino , Camundongos , Toxoplasmose Animal/imunologia , Vacinas de Subunidades Antigênicas/imunologia
10.
Microb Cell Fact ; 16(1): 217, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29183333

RESUMO

BACKGROUND: Although mycobacterial glycolipids are among the first-line molecules involved in host-pathogen interactions, their contribution in virulence remains incomplete. Mycobacterium marinum is a waterborne pathogen of fish and other ectotherms, closely related to Mycobacterium tuberculosis. Since it causes tuberculosis-like systemic infection it is widely used as a model organism for studying the pathogenesis of tuberculosis. It is also an occasional opportunistic human pathogen. The M. marinum surface-exposed lipooligosaccharides (LOS) are immunogenic molecules that participate in the early interactions with macrophages and modulate the host immune system. Four major LOS species, designated LOS-I to LOS-IV, have been identified and characterized in M. marinum. Herein, we investigated the interactions between a panel of defined M. marinum LOS mutants that exhibited various degrees of truncation in the LOS structure, and human-derived THP-1 macrophages to address the potential of LOSs to act as pro- or avirulence factors. RESULTS: A moderately truncated LOS structure did not interfere with M. marinum invasion. However, a deeper shortening of the LOS structure was associated with increased entry of M. marinum into host cells and increased elimination of the bacilli by the macrophages. These effects were dependent on Toll-like receptor 2. CONCLUSION: We provide the first evidence that LOSs inhibit the interaction between mycobacterial cell wall ligands and appropriate macrophage pattern recognition receptors, affecting uptake and elimination of the bacteria by host phagocytes.


Assuntos
Lipopolissacarídeos/genética , Lipopolissacarídeos/imunologia , Macrófagos/microbiologia , Mycobacterium marinum/imunologia , Receptor 2 Toll-Like/imunologia , Linhagem Celular , Parede Celular/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/biossíntese , Macrófagos/imunologia , Mycobacterium marinum/química , Mycobacterium marinum/patogenicidade , Mycobacterium marinum/fisiologia , Fatores de Virulência
11.
Molecules ; 22(5)2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28509874

RESUMO

Sugars with heteroatoms other than oxygen have attained considerable importance in glycobiology and in drug design since they are often more stable in blood plasma due to their resistance to enzymes, such as glycosidases, phosphorylases and glycosyltransferases. The replacement of oxygen atoms in sugars with sulfur forms thio-sugars, which are potentially useful for the treatment of diabetes and some bacterial and viral infections. Here, we evaluated the antibacterial activity of thio-functionalized carbohydrate derivatives. A set of 21 compounds was screened against acid-fast Mycobacterium tuberculosis (Mtb), gram-negative Escherichia coli and gram-positive Staphylococcus aureus. The tested carbohydrate derivatives were most effective against tubercle bacilli, with as many as five compounds (thioglycoside 6, thiosemicarbazone 16A, thiosemicarbazone 20, aminothiadiazole 23, and thiazoline 26) inhibiting its growth with MIC50 ≤ 50 µM/CFU. Only two compounds (aminothiadiazole 23 and thiazoline 26) were able to inhibit the growth of E. coli at concentrations below 1 mM, and one of them, aminothiadiazole 23, inhibited the growth of S. aureus at a concentration ≤1 mM. The five compounds affecting the growth of mycobacteria were either thiodisaccharides (6, 16A, and 20) or thioglycosides (23 and 26). All of these compounds (6, 16A, 20, 23, and 26) were able to inhibit the growth of Mtb deposited within human macrophages. However, three of the five selected compounds (6, 23, and 26) exhibited relatively high cytotoxicity in mouse fibroblasts at micromolar concentrations. The selected thio-sugars are very promising compounds, thus making them candidates for further modifications that would decrease their cytotoxicity against eukaryotic cells without affecting their antimycobacterial potential.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Tiadiazóis/química , Tiadiazóis/farmacologia , Tioglicosídeos/química , Tioglicosídeos/farmacologia , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia
12.
Curr Top Med Chem ; 17(19): 2129-2142, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28137234

RESUMO

BACKGROUND: Mycobacterium tuberculosis (M. tuberculosis), the causative agent of tuberculosis, is a leading infectious disease organism, causing millions of deaths each year. This serious pathogen has been greatly spread worldwide and recent years have observed an increase in the number of multi-drug resistant and totally drug resistant M. tuberculosis strains (WHO report, 2014). The danger of tuberculosis becoming an incurable disease has emphasized the need for the discovery of a new generation of antimicrobial agents. The development of novel alternative medical strategies, new drugs and the search for optimal drug targets are top priority areas of tuberculosis research. FACTORS: Key characteristics of mycobacteria include: slow growth, the ability to transform into a metabolically silent - latent state, intrinsic drug resistance and the relatively rapid development of acquired drug resistance. These factors make finding an ideal antituberculosis drug enormously challenging, even if it is designed to treat drug sensitive tuberculosis strains. A vast majority of canonical antibiotics including antituberculosis agents target bacterial cell wall biosynthesis or DNA/RNA processing. Novel therapeutic approaches are being tested to target mycobacterial cell division, twocomponent regulatory factors, lipid synthesis and the transition between the latent and actively growing states. DISCUSSION AND CONCLUSION: This review discusses the choice of cellular targets for an antituberculosis therapy, describes putative drug targets evaluated in the recent literature and summarizes potential candidates under clinical and pre-clinical development. We focus on the key cellular process of DNA replication, as a prominent target for future antituberculosis therapy. We describe two main pathways: the biosynthesis of nucleic acids precursors - the nucleotides, and the synthesis of DNA molecules. We summarize data regarding replication associated proteins that are critical for nucleotide synthesis, initiation, unwinding and elongation of the DNA during the replication process. They are pivotal processes required for successful multiplication of the bacterial cells and hence they are extensively investigated for the development of antituberculosis drugs. Finally, we summarize the most potent inhibitors of DNA synthesis and provide an up to date report on their status in the clinical trials.


Assuntos
Antituberculosos/farmacologia , Replicação do DNA/efeitos dos fármacos , DNA Bacteriano/efeitos dos fármacos , Descoberta de Drogas , Mycobacterium tuberculosis/efeitos dos fármacos , Trifosfato de Adenosina/biossíntese , Antituberculosos/química , Mycobacterium tuberculosis/genética
13.
Molecules ; 22(1)2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28106753

RESUMO

The DNA ligases, enzymes that seal breaks in the backbones of DNA, are essential for all organisms, however bacterial ligases essential for DNA replication use ß-nicotinamide adenine dinucleotide as their co-factor, whereas those that are essential in eukaryotes and viruses use adenosine-5'-triphosphate. This fact leads to the conclusion that NAD⁺-dependent DNA ligases in bacteria could be targeted by their co-factor specific inhibitors. The development of novel alternative medical strategies, including new drugs, are a top priority focus areas for tuberculosis research due to an increase in the number of multi-drug resistant as well as totally drug resistant tubercle bacilli strains. Here, through the use of a virtual high-throughput screen and manual inspection of the top 200 records, 23 compounds were selected for in vitro studies. The selected compounds were evaluated in respect to their Mycobacterium tuberculosis NAD⁺ DNA ligase inhibitory effect by a newly developed assay based on Genetic Analyzer 3500 Sequencer. The most effective agents (e.g., pinafide, mitonafide) inhibited the activity of M. tuberculosis NAD⁺-dependent DNA ligase A at concentrations of 50 µM. At the same time, the ATP-dependent (phage) DNA LigT4 was unaffected by the agents at concentrations up to 2 mM. The selected compounds appeared to also be active against actively growing tubercle bacilli in concentrations as low as 15 µM.


Assuntos
Antituberculosos/farmacologia , DNA Ligases/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Naftalimidas/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Isoquinolinas/farmacologia , Simulação de Acoplamento Molecular , NAD
14.
PLoS One ; 11(2): e0148030, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26829648

RESUMO

Mycobacterium tuberculosis is an extremely successful intracellular pathogen that has evolved a broad spectrum of pathogenic mechanisms that enable its manipulation of host defense elements and its survival in the hostile environment inside phagocytes. Cellular influx into the site of mycobacterial entry is mediated by a variety of chemokines, including interleukin-8 (IL-8), and the innate cytokine network is critical for the development of an adaptive immune response and infection control. Using affinity chromatography, liquid chromatography electrospray ionization tandem mass spectrometry and surface plasmon resonance techniques, we identified M. tuberculosis AtsG arylsulphatase, bifunctional glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyl transferase (GlmU) and S-adenosyl-L-homocysteine hydrolase (SahH) as the pathogen proteins that bind to human IL-8. The interactions of all of the identified proteins (AtsG, GlmU and SahH) with IL-8 were characterized by high binding affinity with KD values of 6.83x10-6 M, 5.24x10-6 M and 7.14x10-10 M, respectively. Furthermore, the construction of Mtb mutant strains overproducing AtsG, GlmU or SahH allowed determination of the contribution of these proteins to mycobacterial entry into human neutrophils. The significantly increased number of intracellularly located bacilli of the overproducing M. tuberculosis mutant strains compared with those of "wild-type" M. tuberculosis and the binding interaction of AtsG, GlmU and SahH proteins with human IL-8 may indicate that these proteins participate in the modulation of the early events of infection with tubercle bacilli and could affect pathogen attachment to target cells.


Assuntos
Proteínas de Bactérias/metabolismo , Interleucina-8/metabolismo , Mycobacterium tuberculosis/metabolismo , Neutrófilos/microbiologia , Animais , Aderência Bacteriana/genética , Aderência Bacteriana/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Soros Imunes/imunologia , Camundongos , Mutação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tuberculose/imunologia , Tuberculose/microbiologia
15.
Postepy Biochem ; 62(4): 526-534, 2016.
Artigo em Polonês | MEDLINE | ID: mdl-28132455

RESUMO

Thiosugars are carbohydrate analogs in which one or few of the oxygen atoms were replaced by sulfur. The sulfur atom which is present in the furan and pyran structures, changes biological properties of carbohydrates, as compared to their oxygen analogs. Among others, thiosugars are effective inhibitors of various cellular and enzymatic pathways and also have great therapeutic potential. They are used as a drugs in diabetes and infectious diseases treatment. Recent evidence suggests that these compounds may have therapeutic properties and be also used in the treatment of some pathological conditions, including cancer diseases. This research are aimed towards the development and improvement of the current methods of synthesis of new thiosugars through stabilization of sulfur bonds and in vitro and in vivo analysis of their potential therapeutic properties. In this work the summary of the latest reports about thiosugars and their application in the medicine is presented for the first time in the Polish language literature.


Assuntos
Tioaçúcares/uso terapêutico , Animais , Humanos , Estrutura Molecular , Tioaçúcares/química , Tioaçúcares/metabolismo , Tioaçúcares/farmacologia
16.
FEBS J ; 282(7): 1289-306, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25639683

RESUMO

Our knowledge about the mechanisms utilized by Mycobacterium tuberculosis to survive inside macrophages is still incomplete. One of the mechanism that protects M. tuberculosis from the host's microbicidal products and allows bacteria to survive involves DNA repair systems such as the homologous recombination (HR) and nonhomologous end-joining (NHEJ) pathways. It is accepted that any pathway that contributes to genome maintenance should be considered as potentially important virulence factor. In these studies, we investigated reactive oxygen species, nitric oxide and tumor necrosis factor-α production by macrophages infected with wild-type M. tuberculosis, with an HR-defective mutant (∆recA), with an NHEJ-defective mutant [∆(ku,ligD)], with a mutant defective for both HR and NHEJ [∆(ku,ligD,recA)], or with appropriate complemented strains. We also assessed the involvement of extracellular signal-regulated kinases (ERKs) 1 and 2 in the response of macrophages to infection with the above-mentioned strains, and ERK1/2 phosphorylation in M. tuberculosis-infected macrophages. We found that mutants lacking RecA induced a greater bactericidal response by macrophages than did the wild-type strain or an NHEJ-defective mutant, and activated ERK1/2 was involved only in the response of macrophages to recA deletion mutants [∆(ku,ligD,recA) and ∆recA]. We also demonstrated that only the triple mutant induced ERK1/2 phosphorylation in phorbol-12-myristate-13-acetate-stimulated macrophages. Moreover, HR-defective mutants induced lower amounts of tumor necrosis factor-α secretion than did the wild-type or ∆(ku,ligD). Our results indicate that RecA contributes to M. tuberculosis virulence, and also suggest that diminished ERK1/2 activation in macrophages infected with M. tuberculosis possessing recA may be an important mechanism by which wild-type mycobacteria escape intracellular killing.


Assuntos
Proteínas de Bactérias/fisiologia , Macrófagos/imunologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mycobacterium tuberculosis/enzimologia , Recombinases Rec A/fisiologia , Linhagem Celular , Citocinas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Sistema de Sinalização das MAP Quinases , Macrófagos/enzimologia , Macrófagos/microbiologia , Mycobacterium tuberculosis/patogenicidade , Espécies Reativas de Oxigênio/metabolismo , Virulência
17.
Mediators Inflamm ; 2014: 498395, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25120288

RESUMO

Cholesterol oxidase (ChoD) is considered to be an important virulence factor for Mycobacterium tuberculosis (Mtb), but its influence on macrophage activity is unknown. Here we used Nocardia erythropolis ChoD, which is very similar to the Mtb enzyme (70% identity at the amino-acid level), to evaluate the impact of bacterial ChoD on the activity of THP-1-derived macrophages in vitro. We found that ChoD decreased the surface expression of Toll-like receptor type 2 (TLR2) and complement receptor 3 (CR3) on these macrophages. Flow cytometry and confocal microscopy showed that ChoD competed with lipoteichoic acid for ligand binding sites on TLR2 but not on CR3, suggesting that ChoD signaling is mediated via TLR2. Binding of ChoD to the membrane of macrophages had diverse effects on the activity of macrophages, activating p38 mitogen activated kinase and stimulating production of a large amount of interleukin-10. Moreover, ChoD primed macrophages to enhance the production of reactive oxygen species in response to the phorbol myristate acetate, which was reduced by "switching off" TLR-derived signaling through interleukin-1 receptor-associated kinases 1 and 4 inhibition. Our study revealed that ChoD interacts directly with macrophages via TLR2 and influences the biological activity of macrophages during the development of the initial response to infection.


Assuntos
Colesterol Oxidase/metabolismo , Macrófagos/metabolismo , Receptor 2 Toll-Like/metabolismo , Linhagem Celular , Sobrevivência Celular/fisiologia , Humanos , Interleucina-10/metabolismo , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
18.
PLoS One ; 9(3): e92799, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24658131

RESUMO

The intracellular pathogen Mycobacterium tuberculosis (Mtb) is constantly exposed to a multitude of hostile conditions and is confronted by a variety of potentially DNA-damaging assaults in vivo, primarily from host-generated antimicrobial toxic radicals. Exposure to reactive nitrogen species and/or reactive oxygen species causes different types of DNA damage, including oxidation, depurination, methylation and deamination, that can result in single- or double-strand breaks (DSBs). These breaks affect the integrity of the whole genome and, when left unrepaired, can lead to cell death. Here, we investigated the role of the DSB repair pathways, homologous recombination (HR) and non-homologous ends joining (NHEJ), in the survival of Mtb inside macrophages. To this end, we constructed Mtb strains defective for HR (ΔrecA), NHEJ [Δ(ku,ligD)], or both DSB repair systems [Δ(ku,ligD,recA)]. Experiments using these strains revealed that either HR or NHEJ is sufficient for the survival and propagation of tubercle bacilli inside macrophages. Inhibition of nitric oxide or superoxide anion production with L-NIL or apocynin, respectively, enabled the Δ(ku,ligD,recA) mutant strain lacking both systems to survive intracellularly. Complementation of the Δ(ku,ligD,recA) mutant with an intact recA or ku-ligD rescued the ability of Mtb to propagate inside macrophages.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Genoma Bacteriano , Recombinação Homóloga , Macrófagos/microbiologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Linhagem Celular , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Ordem dos Genes , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Mutação , Mycobacterium tuberculosis/efeitos da radiação , Óxido Nítrico/biossíntese , Fagocitose/imunologia , Espécies Reativas de Oxigênio/metabolismo , Recombinases Rec A/metabolismo , Raios Ultravioleta
19.
J Biol Chem ; 289(1): 215-28, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24235141

RESUMO

Mycobacterium marinum is a waterborne pathogen responsible for tuberculosis-like infections in ectotherms and is an occasional opportunistic human pathogen. In the environment, M. marinum also interacts with amoebae, which may serve as a natural reservoir for this microorganism. However, the description of mycobacterial determinants in the early interaction with macrophages or amoebae remains elusive. Lipooligosaccharides (LOSs) are cell surface-exposed glycolipids capable of modulating the host immune system, suggesting that they may be involved in the early interactions of M. marinum with macrophages. Herein, we addressed whether LOS composition affects the uptake of M. marinum by professional phagocytes. Mutants with various truncated LOS variants were generated, leading to the identification of several previously uncharacterized biosynthetic genes (wbbL2, MMAR_2321, and MMAR_2331). Biochemical and structural approaches allowed resolving the structures of LOS precursors accumulating in this set of mutants. These strains with structurally defined LOS profiles were then used to infect both macrophages and Acanthamoebae. An inverse correlation between LOS completeness and uptake of mycobacteria by phagocytes was found, allowing the proposal of three mutant classes: class I (papA4), devoid of LOS and highly efficiently phagocytosed; class II, accumulating only early LOS intermediates (wbbL2 and MMAR_2331) and efficiently phagocytosed but less than class I mutants; class III, lacking LOS-IV (losA, MMAR_2319, and MMAR_2321) and phagocytosed similarly to the control strain. These results indicate that phagocytosis is conditioned by the LOS pattern and that the LOS pathway used by M. marinum in macrophages is conserved during infection of amoebae.


Assuntos
Lipopolissacarídeos , Macrófagos/metabolismo , Mutação , Infecções por Mycobacterium não Tuberculosas , Mycobacterium marinum , Fagocitose , Acanthamoeba/microbiologia , Linhagem Celular , Genes Bacterianos , Humanos , Lipopolissacarídeos/genética , Lipopolissacarídeos/metabolismo , Macrófagos/microbiologia , Infecções por Mycobacterium não Tuberculosas/genética , Infecções por Mycobacterium não Tuberculosas/metabolismo , Mycobacterium marinum/genética , Mycobacterium marinum/metabolismo , Mycobacterium marinum/patogenicidade
20.
PLoS One ; 8(9): e73333, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039915

RESUMO

Despite considerable research effort, the molecular mechanisms of Mycobacterium tuberculosis (Mtb) virulence remain unclear. Cholesterol oxidase (ChoD), an extracellular enzyme capable of converting cholesterol to its 3-keto-4-ene derivative, cholestenone, has been proposed to play a role in the virulence of Mtb. Here, we verified the hypothesis that ChoD is capable of modifying the bactericidal and pro-inflammatory activity of human macrophages. We also sought to determine the contribution of complement receptor 3 (CR3)- and Toll-like receptor 2 (TLR2)-mediated signaling pathways in the development of macrophage responses to Mtb. We found that intracellular replication of an Mtb mutant lacking a functional choD gene (ΔchoD) was less efficient in macrophages than that of the wild-type strain. Blocking CR3 and TLR2 with monoclonal antibodies enhanced survival of ΔchoD inside macrophages. We also showed that, in contrast to wild-type Mtb, the ΔchoD strain induced nitric oxide production in macrophages, an action that depended on the TLR2, but not the CR3, signaling pathway. Both wild-type and mutant strains inhibited the production of reactive oxygen species (ROS), but the ΔchoD strain did so to a significantly lesser extent. Blocking TLR2-mediated signaling abolished the inhibitory effect of wild-type Mtb on ROS production by macrophages. Wild-type Mtb, but not the ΔchoD strain, decreased phorbol myristate acetate-induced phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), which are involved in both TLR2- and CR3-mediated signaling pathways. Our finding also revealed that the production of interleukin 10 by macrophages was significantly lower in ΔchoD-infected macrophages than in wild-type Mtb-infected macrophages. However, tumor necrosis factor-α production by macrophages was the same after infection with mutant or wild-type strains. In summary, we demonstrate here that ChoD is required for Mtb interference with the TLR2-mediated signaling pathway and subsequent intracellular growth and survival of the pathogen in human macrophages.


Assuntos
Proteínas de Bactérias/imunologia , Colesterol Oxidase/imunologia , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Mycobacterium tuberculosis/fisiologia , Mycobacterium tuberculosis/patogenicidade , Tuberculose/microbiologia , Proteínas de Bactérias/genética , Colesterol Oxidase/genética , Deleção de Genes , Humanos , Antígeno de Macrófago 1/imunologia , Macrófagos/imunologia , Mycobacterium tuberculosis/enzimologia , Transdução de Sinais , Receptor 2 Toll-Like/imunologia , Tuberculose/enzimologia , Tuberculose/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA