Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cancer Res ; 84(7): 1084-1100, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266099

RESUMO

Eradication of acute myeloid leukemia (AML) is therapeutically challenging; many patients succumb to AML despite initially responding to conventional treatments. Here, we showed that the imipridone ONC213 elicits potent antileukemia activity in a subset of AML cell lines and primary patient samples, particularly in leukemia stem cells, while producing negligible toxicity in normal hematopoietic cells. ONC213 suppressed mitochondrial respiration and elevated α-ketoglutarate by suppressing α-ketoglutarate dehydrogenase (αKGDH) activity. Deletion of OGDH, which encodes αKGDH, suppressed AML fitness and impaired oxidative phosphorylation, highlighting the key role for αKGDH inhibition in ONC213-induced death. ONC213 treatment induced a unique mitochondrial stress response and suppressed de novo protein synthesis in AML cells. Additionally, ONC213 reduced the translation of MCL1, which contributed to ONC213-induced apoptosis. Importantly, a patient-derived xenograft from a relapsed AML patient was sensitive to ONC213 in vivo. Collectively, these findings support further development of ONC213 for treating AML. SIGNIFICANCE: In AML cells, ONC213 suppresses αKGDH, which induces a unique mitochondrial stress response, and reduces MCL1 to decrease oxidative phosphorylation and elicit potent antileukemia activity. See related commentary by Boët and Sarry, p. 950.


Assuntos
Leucemia Mieloide Aguda , Fosforilação Oxidativa , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Apoptose
2.
Biochem Pharmacol ; 220: 115981, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081370

RESUMO

Venetoclax (VEN), in combination with low dose cytarabine (AraC) or a hypomethylating agent, is FDA approved to treat acute myeloid leukemia (AML) in patients who are over the age of 75 or cannot tolerate standard chemotherapy. Despite high response rates to these therapies, most patients succumb to the disease due to relapse and/or drug resistance, providing an unmet clinical need for novel therapies to improve AML patient survival. ME-344 is a potent isoflavone with demonstrated inhibitory activity toward oxidative phosphorylation (OXPHOS) and clinical activity in solid tumors. Given that OXPHOS inhibition enhances VEN antileukemic activity against AML, we hypothesized that ME-344 could enhance the anti-AML activity of VEN. Here we report that ME-344 enhanced VEN to target AML cell lines and primary patient samples while sparing normal hematopoietic cells. Cooperative suppression of OXPHOS was detected in a subset of AML cell lines and primary patient samples. Metabolomics analysis revealed a significant reduction of purine biosynthesis metabolites by ME-344. Further, lometrexol, a purine biosynthesis inhibitor, synergistically enhanced VEN-induced apoptosis in AML cell lines. Interestingly, AML cells with acquired AraC resistance showed significantly increased purine biosynthesis metabolites and sensitivities to ME-344. Furthermore, synergy between ME-344 and VEN was preserved in these AraC-resistant AML cells. In vivo studies revealed significantly prolonged survival upon combination therapy of ME-344 and VEN in NSGS mice bearing parental or AraC-resistant MV4-11 leukemia compared to the vehicle control. This study demonstrates that ME-344 enhances VEN antileukemic activity against preclinical models of AML by suppressing OXPHOS and/or purine biosynthesis.


Assuntos
Isoflavonas , Leucemia Mieloide Aguda , Sulfonamidas , Humanos , Animais , Camundongos , Fosforilação Oxidativa , Leucemia Mieloide Aguda/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes , Isoflavonas/farmacologia , Purinas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
3.
Res Sq ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37162954

RESUMO

Venetoclax (VEN), in combination with low dose cytarabine (AraC) or a hypomethylating agent, is FDA approved to treat acute myeloid leukemia (AML) in patients who are over the age of 75 or cannot tolerate standard chemotherapy. Despite high response rates to these combination therapies, most patients succumb to the disease due to relapse and/or drug resistance, providing an unmet clinical need for novel therapies to improve AML patient survival. ME-344 is a potent isoflavone with demonstrated inhibitory activity toward oxidative phosphorylation (OXPHOS) and clinical activity in solid tumors. Given that OXPHOS inhibition enhances VEN antileukemic activity against AML, we hypothesized that ME-344 could enhance the anti-AML activity of VEN. Here we report that ME-344 synergized with VEN to target AML cell lines and primary patient samples while sparing normal hematopoietic cells. Cooperative suppression of OXPHOS was detected in a subset of AML cell lines and primary patient samples. Metabolomics analysis revealed a significant reduction of purine biosynthesis metabolites by ME-344. Further, lometrexol, an inhibitor of purine biosynthesis, synergistically enhanced VEN-induced apoptosis in AML cell lines. Interestingly, AML cells with acquired resistance to AraC showed significantly increased purine biosynthesis metabolites and sensitivities to ME-344. Furthermore, synergy between ME-344 and VEN was preserved in these AraC-resistant AML cells. These results translated into significantly prolonged survival upon combination of ME-344 and VEN in NSGS mice bearing parental or AraC-resistant MV4-11 leukemia. This study demonstrates that ME-344 enhances VEN antileukemic activity against preclinical models of AML by suppressing OXPHOS and/or purine biosynthesis.

5.
Cancer Immunol Immunother ; 72(5): 1273-1284, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36434273

RESUMO

There is a need to improve response rates of immunotherapies in lung adenocarcinoma (AC). Extended (7-14 days) treatment of high glucocorticoid receptor (GR) expressing lung AC cells with dexamethasone (Dex) induces an irreversible senescence phenotype through chronic induction of p27. As the senescence-associated secretory phenotype (SASP) may have either tumor supporting or antitumor immunomodulatory effects, it was interest to examine the effects of Dex-induced senescence of lung AC cells on immune cells. Dex-induced senescence resulted in sustained production of CCL2, CCL4, CXCL1 and CXCL2, both in vitro and in vivo. After Dex withdrawal, secretion of these chemokines by the senescent cells attracted peripheral blood monocytes, T-cells, and NK cells. Following treatment with Dex-induced SASP protein(s), the peripheral blood lymphocytes exhibited higher cell count and tumor cytolytic activity along with enhanced Ki67 and perforin expression in T and NK cells. This cytolytic activity was partially attributed to NKG2D, which was upregulated in NK cells by SASP while its ligand MICA/B was upregulated in the senescent cells. Enhanced infiltrations of T and NK cells were observed in human lung AC xenografts in humanized NSG mice, following treatment with Dex. The findings substantiate the idea that induction of irreversible senescence in high-GR expressing subpopulations of lung AC tumors using Dex pretreatment enhances tumor immune infiltration and may subsequently improve the clinical outcome of current immunotherapies.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Dexametasona/farmacologia , Adenocarcinoma de Pulmão/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Células Matadoras Naturais/metabolismo , Senescência Celular/genética
6.
Cancer Metastasis Rev ; 41(4): 965-974, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36451067

RESUMO

Epithelial-specific Maspin is widely known as a tumor suppressor. However, while the level of maspin expression is inversely correlated with tumor grade and stage, emerging clinical evidence shows a correlation between seemingly better differentiated tumor cells that express Maspin in both the nucleus and the cytoplasm, (n + c)Maspin, with a poor prognosis of many types of cancer. Biological studies demonstrate that Maspin plays an essential role in stem cell differentiation. In light of the recently established characterization of primed stem cells (P-SCs) in development, we propose, for the first time, that cancer stem cells (CSCs) also need to undergo priming (P-CSCs) before their transition to various progeny phenotypes. We envisage major differences in the steady state kinetics between P-SCs and P-CSCs. We further propose that P-CSCs of carcinoma are both marked and regulated by (n + c)Maspin. The concept of P-CSCs helps explain the apparent dichotomous relationships of (n + c)Maspin expression with cancer diagnosis and prognosis, and is supported by the evidence from mechanistic studies. We believe that the potential utility of (n + c)Maspin as a molecular marker of P-CSCs may significantly accelerate the advancement in our understanding of the genesis of tumor phenotypic plasticity in response to changes of tumor microenvironments (TME) or drug treatments. The vulnerabilities of the cellular state of (n + c)Maspin-expressing P-CSCs are also discussed as the rationale for future development of P-CSC-targeted chemotherapeutic and immunotherapeutic strategies.


Assuntos
Neoplasias , Serpinas , Serpinas/genética , Serpinas/metabolismo , Genes Supressores de Tumor , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Neoplasias/genética
7.
Sci Rep ; 12(1): 11346, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790779

RESUMO

Novel therapies are urgently needed for epithelial ovarian cancer (EOC), the most lethal gynecologic malignancy. In addition, therapies that target unique vulnerabilities in the tumor microenvironment (TME) of EOC have largely been unrealized. One strategy to achieve selective drug delivery for EOC therapy involves use of targeted antifolates via their uptake by folate receptor (FR) proteins, resulting in inhibition of essential one-carbon (C1) metabolic pathways. FRα is highly expressed in EOCs, along with the proton-coupled folate transporter (PCFT); FRß is expressed on activated macrophages, a major infiltrating immune population in EOC. Thus, there is great potential for targeting both the tumor and the TME with agents delivered via selective transport by FRs and PCFT. In this report, we investigated the therapeutic potential of a novel cytosolic C1 6-substituted pyrrolo[2,3-d]pyrimidine inhibitor AGF94, with selectivity for uptake by FRs and PCFT and inhibition of de novo purine nucleotide biosynthesis, against a syngeneic model of ovarian cancer (BR-Luc) which recapitulates high-grade serous ovarian cancer in patients. In vitro activity of AGF94 was extended in vivo against orthotopic BR-Luc tumors. With late-stage subcutaneous BR-Luc xenografts, AGF94 treatment resulted in substantial anti-tumor efficacy, accompanied by significantly decreased M2-like FRß-expressing macrophages and increased CD3+ T cells, whereas CD4+ and CD8+ T cells were unaffected. Our studies demonstrate potent anti-tumor efficacy of AGF94 in the therapy of EOC in the context of an intact immune system, and provide a framework for targeting the immunosuppressive TME as an essential component of therapy.


Assuntos
Antineoplásicos , Antagonistas do Ácido Fólico , Neoplasias Ovarianas , Animais , Antineoplásicos/farmacologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Feminino , Antagonistas do Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/uso terapêutico , Humanos , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Pirimidinas/metabolismo , Microambiente Tumoral
8.
Blood Cancer J ; 11(6): 111, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099621

RESUMO

About 25% of patients with acute myeloid leukemia (AML) harbor FMS-like tyrosine kinase 3 (FLT3) internal tandem duplication (ITD) mutations and their prognosis remains poor. Gilteritinib is a FLT3 inhibitor approved by the US FDA for use in adult FLT3-mutated relapsed or refractory AML patients. Monotherapy, while efficacious, shows short-lived responses, highlighting the need for combination therapies. Here we show that gilteritinib and CUDC-907, a dual inhibitor of PI3K and histone deacetylases, synergistically induce apoptosis in FLT3-ITD AML cell lines and primary patient samples and have striking in vivo efficacy. Upregulation of FLT3 and activation of ERK are mechanisms of resistance to gilteritinib, while activation of JAK2/STAT5 is a mechanism of resistance to CUDC-907. Gilteritinib and CUDC-907 reciprocally overcome these mechanisms of resistance. In addition, the combined treatment results in cooperative downregulation of cellular metabolites and persisting antileukemic effects. CUDC-907 plus gilteritinib shows synergistic antileukemic activity against FLT3-ITD AML in vitro and in vivo, demonstrating strong translational therapeutic potential.


Assuntos
Leucemia Mieloide Aguda , Tirosina Quinase 3 Semelhante a fms , Compostos de Anilina/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Feminino , Humanos , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Morfolinas/farmacologia , Pirazinas/farmacologia , Pirimidinas/farmacologia , Células THP-1 , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
9.
Cancer Med ; 10(10): 3373-3387, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33932119

RESUMO

OBJECTIVES: Treatment of both platinum resistant high grade (HG) and low-grade (LG) ovarian cancer (OVCA) poses significant challenges as neither respond well to conventional chemotherapy leading to morbidity and mortality. Identification of novel agents that can overcome chemoresistance is therefore critical. Previously, we have demonstrated that OVCA has basal upregulated unfolded protein response (UPR) and that targeting cellular processes leading to further and persistent upregulation of UPR leads to cell death. ONC201 is an orally bioavailable Dopamine Receptor D2 inhibitor demonstrating anticancer activity and was found to induce UPR. Given its unique properties, we hypothesized that ONC201 would overcome platinum resistance in OVCA. METHODS: Cisplatin sensitive and resistant HG OVCA and two primary LG OVCA cell lines were studied. Cell viability was determined using MTT assay. Cell migration was studied using wound healing assay. Apoptosis and mitochondrial membrane potential were investigated using flow cytometry. Analysis of pathway inhibition was performed by Western Blot. mRNA expression of UPR related genes were measured by qPCR. In vivo studies were completed utilizing axillary xenograft models. Co-testing with conventional chemotherapy was performed to study synergy. RESULTS: ONC201 significantly inhibited cell viability and migration in a dose dependent manner with IC50's from 1-20 µM for both cisplatin sensitive and resistant HG and LG-OVCA cell lines. ONC201 lead to upregulation of the pro-apoptotic arm of the UPR, specifically ATF-4/CHOP/ATF3 and increased the intrinsic apoptosispathway. The compensatory, pro-survival PI3K/AKT/mTOR pathway was downregulated. In vivo, weekly dosing of single agent ONC201 decreased xenograft tumor size by ~50% compared to vehicle. ONC201 also demonstrated significant synergy with paclitaxel in a highly platinum resistant OVCA cell-line (OV433). CONCLUSIONS: Our findings demonstrate that ONC201 can effectively overcome chemoresistance in OVCA cells by blocking pro-survival pathways and inducing the apoptotic arm of the UPR. This is a promising, orallybioavailable therapeutic agent to consider in clinical trials for patients with both HG and LG OVCA.


Assuntos
Carcinoma Epitelial do Ovário/tratamento farmacológico , Morte Celular/efeitos dos fármacos , Imidazóis/farmacologia , Compostos Organoplatínicos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Piridinas/farmacologia , Pirimidinas/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Antineoplásicos/farmacologia , Carcinoma Epitelial do Ovário/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Antagonistas dos Receptores de Dopamina D2/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Receptores de Dopamina D2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
10.
Haematologica ; 106(5): 1262-1277, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32165486

RESUMO

Venetoclax is a promising agent in the treatment of acute myeloid leukemia, though its antileukemic activity is limited to combination therapies. Mcl-1 downregulation, Bim upregulation, and DNA damage have been identified as potential ways to enhance venetoclax activity. In this study, we combine venetoclax with the dual PI3K and histone deacetylase inhibitor CUDC-907, which can downregulate Mcl-1, upregulate Bim, and induce DNA damage, as well as downregulate c-Myc. We establish that CUDC-907 and venetoclax synergistically induce apoptosis in acute myeloid leukemia cell lines and primary acute myeloid leukemia patient samples ex vivo. CUDC-907 downregulates CHK1, Wee1, RRM1, and c-Myc, which were found to play a role in venetoclax-induced apoptosis. Interestingly, we found that venetoclax treatment enhances CUDC-907-induced DNA damage potentially through inhibition of DNA repair. In vivo results show that CUDC-907 enhances venetoclax efficacy in an acute myeloid leukemia cell line derived xenograft mouse model, supporting the development of CUDC-907 in combination with venetoclax for the treatment of acute myeloid leukemia.


Assuntos
Leucemia Mieloide Aguda , Fosfatidilinositol 3-Quinases , Animais , Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes , Linhagem Celular Tumoral , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Camundongos , Morfolinas , Pirimidinas , Sulfonamidas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cancers (Basel) ; 12(9)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847115

RESUMO

Targeting oxidative phosphorylation (OXPHOS) is a promising strategy to improve treatment outcomes of acute myeloid leukemia (AML) patients. IACS-010759 is a mitochondrial complex I inhibitor that has demonstrated preclinical antileukemic activity and is being tested in Phase I clinical trials. However, complex I deficiency has been reported to inhibit apoptotic cell death through prevention of cytochrome c release. Thus, combining IACS-010759 with a BH3 mimetic may overcome this mechanism of resistance leading to synergistic antileukemic activity against AML. In this study, we show that IACS-010759 and venetoclax synergistically induce apoptosis in OXPHOS-reliant AML cell lines and primary patient samples and cooperatively target leukemia progenitor cells. In a relatively OXPHOS-reliant AML cell line derived xenograft mouse model, IACS-010759 treatment significantly prolonged survival, which was further enhanced by treatment with IACS-010759 in combination with venetoclax. Consistent with our hypothesis, IACS-010759 treatment indeed retained cytochrome c in mitochondria, which was completely abolished by venetoclax, resulting in Bak/Bax- and caspase-dependent apoptosis. Our preclinical data provide a rationale for further development of the combination of IACS-010759 and venetoclax for the treatment of patients with AML.

12.
Signal Transduct Target Ther ; 5(1): 17, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32296028

RESUMO

Venetoclax, an FDA-approved Bcl-2 selective inhibitor for the treatment of chronic lymphocytic leukemia and acute myeloid leukemia (AML), is tolerated well in elderly patients with AML and has good overall response rates; however, resistance remains a concern. In this study, we show that targeting CDK9 with voruciclib in combination with venetoclax results in synergistic antileukemic activity against AML cell lines and primary patient samples. CDK9 inhibition enhances venetoclax activity through downregulation of Mcl-1 and c-Myc. However, downregulation of Mcl-1 is transient, which necessitates an intermittent treatment schedule to allow for repeated downregulation of Mcl-1. Accordingly, an every other day schedule of the CDK9 inhibitor is effective in vitro and in vivo in enhancing the efficacy of venetoclax. Our preclinical data provide a rationale for an intermittent drug administration schedule for the clinical evaluation of the combination treatment for AML.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Quinase 9 Dependente de Ciclina/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sulfonamidas/administração & dosagem , Adolescente , Adulto , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Benzopiranos/administração & dosagem , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Imino Furanoses/administração & dosagem , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-myc/genética , Adulto Jovem
13.
J Biol Chem ; 295(11): 3532-3552, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32024692

RESUMO

NF-κB is a pro-inflammatory transcription factor that critically regulates immune responses and other distinct cellular pathways. However, many NF-κB-mediated pathways for cell survival and apoptosis signaling in cancer remain to be elucidated. Cell cycle and apoptosis regulatory protein 1 (CARP-1 or CCAR1) is a perinuclear phosphoprotein that regulates signaling induced by anticancer chemotherapy and growth factors. Although previous studies have reported that CARP-1 is a part of the NF-κB proteome, regulation of NF-κB signaling by CARP-1 and the molecular mechanism(s) involved are unclear. Here, we report that CARP-1 directly binds the NF-κB-activating kinase IκB kinase subunit γ (NEMO or NF-κB essential modulator) and regulates the chemotherapy-activated canonical NF-κB pathway. Importantly, blockade of NEMO-CARP-1 binding diminished NF-κB activation, indicated by reduced phosphorylation of its subunit p65/RelA by the chemotherapeutic agent adriamycin (ADR), but not NF-κB activation induced by tumor necrosis factor α (TNFα), interleukin (IL)-1ß, or epidermal growth factor. High-throughput screening of a chemical library yielded a small molecule inhibitor of NEMO-CARP-1 binding, termed selective NF-κB inhibitor 1 (SNI)-1). We noted that SNI-1 enhances chemotherapy-dependent growth inhibition of a variety of cancer cells, including human triple-negative breast cancer (TNBC) and patient-derived TNBC cells in vitro, and attenuates chemotherapy-induced secretion of the pro-inflammatory cytokines TNFα, IL-1ß, and IL-8. SNI-1 also enhanced ADR or cisplatin inhibition of murine TNBC tumors in vivo and reduced systemic levels of pro-inflammatory cytokines. We conclude that inhibition of NEMO-CARP-1 binding enhances responses of cancer cells to chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinase I-kappa B/metabolismo , Animais , Proteínas Reguladoras de Apoptose/química , Proteínas de Ciclo Celular/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Citocinas/metabolismo , Dano ao DNA , Doxorrubicina/farmacologia , Epitopos/metabolismo , Mediadores da Inflamação/metabolismo , Cinética , Camundongos Endogâmicos BALB C , Modelos Biológicos , Modelos Moleculares , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Termodinâmica , Fator de Transcrição RelA/metabolismo
14.
Clin Cancer Res ; 25(22): 6815-6826, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31320594

RESUMO

PURPOSE: To investigate the efficacy of the combination of the FLT3 inhibitors midostaurin or gilteritinib with the Bcl-2 inhibitor venetoclax in FLT3-internal tandem duplication (ITD) acute myeloid leukemia (AML) and the underlying molecular mechanism. EXPERIMENTAL DESIGN: Using both FLT3-ITD cell lines and primary patient samples, Annexin V-FITC/propidium iodide staining and flow cytometry analysis were used to quantify cell death induced by midostaurin or gilteritinib, alone or in combination with venetoclax. Western blot analysis was performed to assess changes in protein expression levels of members of the JAK/STAT, MAPK/ERK, and PI3K/AKT pathways, and members of the Bcl-2 family of proteins. The MV4-11-derived xenograft mouse model was used to assess in vivo efficacy of the combination of gilteritinib and venetoclax. Lentiviral overexpression of Mcl-1 was used to confirm its role in cell death induced by midostaurin or gilteritinib with venetoclax. Changes of Mcl-1 transcript levels were assessed by RT-PCR. RESULTS: The combination of midostaurin or gilteritinib with venetoclax potently and synergistically induces apoptosis in FLT3-ITD AML cell lines and primary patient samples. The FLT3 inhibitors induced downregulation of Mcl-1, enhancing venetoclax activity. Phosphorylated-ERK expression is induced by venetoclax but abolished by the combination of venetoclax with midostaurin or gilteritinib. Simultaneous downregulation of Mcl-1 by midostaurin or gilteritinib and inhibition of Bcl-2 by venetoclax results in "free" Bim, leading to synergistic induction of apoptosis. In vivo results show that gilteritinib in combination with venetoclax has therapeutic potential. CONCLUSIONS: Inhibition of Bcl-2 via venetoclax synergistically enhances the efficacy of midostaurin and gilteritinib in FLT3-mutated AML.See related commentary by Perl, p. 6567.


Assuntos
Compostos de Anilina/farmacologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Pirazinas/farmacologia , Estaurosporina/análogos & derivados , Tirosina Quinase 3 Semelhante a fms/genética , Animais , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sinergismo Farmacológico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Duplicação Gênica , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Estaurosporina/farmacologia , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Mol Cancer Ther ; 18(10): 1787-1799, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31289137

RESUMO

Folate-dependent one-carbon (C1) metabolism is compartmentalized into the mitochondria and cytosol and supports cell growth through nucleotide and amino acid biosynthesis. Mitochondrial C1 metabolism, including serine hydroxymethyltransferase (SHMT) 2, provides glycine, NAD(P)H, ATP, and C1 units for cytosolic biosynthetic reactions, and is implicated in the oncogenic phenotype across a wide range of cancers. Whereas multitargeted inhibitors of cytosolic C1 metabolism, such as pemetrexed, are used clinically, there are currently no anticancer drugs that specifically target mitochondrial C1 metabolism. We used molecular modeling to design novel small-molecule pyrrolo[3,2-d]pyrimidine inhibitors targeting mitochondrial C1 metabolism at SHMT2. In vitro antitumor efficacy was established with the lead compounds (AGF291, AGF320, AGF347) toward lung, colon, and pancreatic cancer cells. Intracellular targets were identified by metabolic rescue with glycine and nucleosides, and by targeted metabolomics using a stable isotope tracer, with confirmation by in vitro assays with purified enzymes. In addition to targeting SHMT2, inhibition of the cytosolic purine biosynthetic enzymes, ß-glycinamide ribonucleotide formyltransferase and/or 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase, and SHMT1 was also established. AGF347 generated significant in vivo antitumor efficacy with potential for complete responses against both early-stage and upstage MIA PaCa-2 pancreatic tumor xenografts, providing compelling proof-of-concept for therapeutic targeting of SHMT2 and cytosolic C1 enzymes by this series. Our results establish structure-activity relationships and identify exciting new drug prototypes for further development as multitargeted antitumor agents.


Assuntos
Antineoplásicos/farmacologia , Carbono/metabolismo , Citosol/metabolismo , Mitocôndrias/metabolismo , Pirimidinas/farmacologia , Pirróis/farmacologia , Animais , Antineoplásicos/química , Vias Biossintéticas/efeitos dos fármacos , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Citosol/efeitos dos fármacos , Feminino , Concentração Inibidora 50 , Metabolômica , Camundongos SCID , Mitocôndrias/efeitos dos fármacos , Purinas/biossíntese , Pirimidinas/química , Pirróis/química , Ensaios Antitumorais Modelo de Xenoenxerto
16.
PLoS One ; 14(4): e0215089, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31002675

RESUMO

AIM: Barrett's esophagus (BE) is a predisposing factor of esophageal adenocarcinoma/gastroesophageal junction adenocarcinoma (ECA/GEJ Aca). BE patients are stratified and subsequently monitored according to the risk of malignant progression by the combination of endoscopy and biopsy. This study is to evaluate the maspin expression patterns as early diagnostic markers of malignancy in BE patients. MATERIALS AND METHODS: Immunohistochemistry (IHC) staining was performed on 62 archival core biopsies from 35 patients, including BE without dysplasia (intestinal metaplasia, IM), BE with low grade dysplasia, BE with high grade dysplasia, carcinoma in situ, and well to poorly differentiated ECA/GEJ Aca (PD-ECA/GEJ Aca). The intensity and the subcellular distribution of immunoreactivity were evaluated microscopically. Statistical analysis was performed using the χ2 and Fisher exact tests. RESULTS: The level of epithelial-specific tumor suppressor maspin protein inversely correlated with the progression from IM to PD-ECA/GEJ Aca. Lesions of each pathological grade could be divided into subtypes that exhibited distinct maspin subcellular distribution patterns, including nuclear only (Nuc), combined nuclear and cytoplasmic (Nuc+Cyt), cytoplasmic only (Cyt) and overall negligible (Neg). The Cyt subtype, which was minor in both IM and dysplasia (approximately 10%), was predominant in ECA/GEJ Aca as early as well-differentiated lesions (more than 50%: p = 0.0092). In comparison, nuclear staining of the tumor suppressor TP53 was heterogeneous in dysplasia, and did not correlate with the differentiation grades of ECA/GEJ Aca. CONCLUSION: The Cyt subtype of maspin expression pattern in core biopsies of BE patients may serve as a molecular marker for early diagnosis of ECA/GEJ Aca.


Assuntos
Adenocarcinoma/patologia , Esôfago de Barrett/patologia , Neoplasias Esofágicas/patologia , Junção Esofagogástrica/patologia , Esôfago/patologia , Metaplasia/patologia , Lesões Pré-Cancerosas/patologia , Serpinas/metabolismo , Adenocarcinoma/metabolismo , Esôfago de Barrett/metabolismo , Biomarcadores Tumorais/metabolismo , Estudos de Casos e Controles , Progressão da Doença , Neoplasias Esofágicas/metabolismo , Junção Esofagogástrica/metabolismo , Esôfago/metabolismo , Humanos , Metaplasia/metabolismo , Lesões Pré-Cancerosas/metabolismo
17.
Haematologica ; 104(11): 2225-2240, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30819918

RESUMO

Induction therapy for patients with acute myeloid leukemia (AML) has remained largely unchanged for over 40 years, while overall survival rates remain unacceptably low, highlighting the need for new therapies. The PI3K/Akt pathway is constitutively active in the majority of patients with AML. Given that histone deacetylase inhibitors have been shown to synergize with PI3K inhibitors in preclinical AML models, we investigated the novel dual-acting PI3K and histone deacetylase inhibitor CUDC-907 in AML cells both in vitro and in vivo We demonstrated that CUDC-907 induces apoptosis in AML cell lines and primary AML samples and shows in vivo efficacy in an AML cell line-derived xenograft mouse model. CUDC-907-induced apoptosis was partially dependent on Mcl-1, Bim, and c-Myc. CUDC-907 induced DNA damage in AML cells while sparing normal hematopoietic cells. Downregulation of CHK1, Wee1, and RRM1, and induction of DNA damage also contributed to CUDC-907-induced apoptosis of AML cells. In addition, CUDC-907 treatment decreased leukemia progenitor cells in primary AML samples ex vivo, while also sparing normal hematopoietic progenitor cells. These findings support the clinical development of CUDC-907 for the treatment of AML.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Pirimidinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Genes myc , Humanos , Imunofenotipagem , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cancer Metastasis Rev ; 37(4): 655-663, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30484007

RESUMO

The predominant cause of cancer mortality is metastasis. The major impediment to cancer cure is the intrinsic or acquired resistance to currently available therapies. Cancer is heterogeneous at the genetic, epigenetic, and metabolic levels. And, while a molecular-targeted drug may be pathway-precise, it can still fail to achieve wholesome cancer-precise toxicity. In the current review, we discuss the strategic differences between targeting the strengths of cancer cells in phenotypic plasticity and heterogeneity and targeting shared vulnerabilities of cancer cells such as the compromised integrity of membranous organelles. To better recapitulate subpopulations of cancer cells in different phenotypic and functional states, we developed a schematic combination of 2-dimensional culture (2D), 3-dimmensional culture in collagen I (3D), and mammosphere culture for stem cells (mammosphere), designated as Scheme 2D/3D/mammosphere. We investigated how the tumor suppressor maspin may limit carcinoma cell plasticity and affect their context-dependent response to drugs of different mechanisms including docetaxel, histone deacetylase (HDAC) inhibitor MS-275, and ionophore antibiotic salinomycin. We showed that tumor cell phenotypic plasticity is not an exclusive attribute to cancer stem cells. Nonetheless, three subpopulations of prostate cancer cells, enriched through Scheme 2D/3D/mammosphere, show qualitatively different drug responses. Interestingly, salinomycin was the only drug that effectively killed all three cancer cell subpopulations, irrespective of their capacity of stemness. Further, Scheme 2D/3D/mammosphere may be a useful model to accelerate the screening for curative cancer drugs while avoiding costly characterization of compounds that may have only selective toxicity to some, but not all, cancer cell subpopulations.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/patologia , Adaptação Fisiológica , Animais , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Metástase Neoplásica , Medicina de Precisão/métodos
19.
J Cell Biochem ; 118(7): 1639-1647, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28262971

RESUMO

To improve the precision of molecular diagnosis and to develop and guide targeted therapies of breast cancer, it is essential to determine the mechanisms that underlie the specific tumor phenotypes. To this end, the application of a snapshot of gene expression profile for breast cancer diagnosis and prognosis is fundamentally challenged since the tissue-based data are derived from heterogonous cell types and are not likely to reflect the dynamics of context-dependent tumor progression and drug sensitivity. The intricate network of epithelial differentiation program can be concertedly controlled by tumor suppressor maspin, a homologue of clade B serine protease inhibitors (serpin), through its multifaceted molecular interactions in multiple subcellular localizations. Unlike most other serpins that are expressed in multiple cell types, maspin is epithelial specific and has distinct roles in luminal and myoepithelial cells. Endogenously expressed maspin has been found in the nucleus and cytoplasm, and detected on the surface of cell membrane. It is also secreted free and as an exosomal cargo protein. Research in the field has led to the identification of the maspin targets and maspin-associated molecules, as well as the structural determinants of its suppressive functions. The current review discusses the possibility for maspin to serve as a cell type-specific and context-sensitive marker to improve the precision of breast cancer diagnosis and prognosis. These advancements further suggest a new window of opportunity for designing novel maspin-based chemotherapeutic agents with improved anti-cancer potency. J. Cell. Biochem. 118: 1639-1647, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Neoplasias da Mama/metabolismo , Medicina de Precisão/métodos , Serpinas/metabolismo , Animais , Neoplasias da Mama/genética , Células Epiteliais/metabolismo , Humanos , Glândulas Mamárias Humanas , Serpinas/genética
20.
Oncotarget ; 8(5): 8043-8056, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28009978

RESUMO

Maspin is an epithelial-specific tumor suppressor shown to exert its biological effects as an intracellular, cell membrane-associated, and secreted free molecule. A recent study suggests that upon DNA-damaging g-irradiation, tumor cells can secrete maspin as an exosome-associated protein. To date, the biological significance of exosomal secretion of maspin is unknown. The current study aims at addressing whether maspin is spontaneously secreted as an exosomal protein to regulate tumor/stromal interactions. We prepared exosomes along with cell extracts and vesicle-depleted conditioned media (VDCM) from normal epithelial (CRL2221, MCF-10A and BEAS-2B) and cancer (LNCaP, PC3 and SUM149) cell lines. Atomic force microscopy and dynamic light scattering analysis revealed similar size distribution patterns and surface zeta potentials between the normal cells-derived and tumor cells-derived exosomes. Electron microscopy revealed that maspin was encapsulated by the exosomal membrane as a cargo protein. While western blotting revealed that the level of exosomal maspin from tumor cell lines was disproportionally lower relative to the levels of corresponding intracellular and VDCM maspin, as compared to that from normal cell lines, maspin knockdown in MCF-10A cells led to maspin-devoid exosomes, which exhibited significantly reduced suppressive effects on the chemotaxis activity of recipient NIH3T3 fibroblast cells. These data are the first to demonstrate the potential of maspin delivered by exosomes to block tumor-induced stromal response, and support the clinical application of exosomal maspin in cancer diagnosis and treatment.


Assuntos
Células Epiteliais/metabolismo , Exossomos/metabolismo , Neoplasias Inflamatórias Mamárias/metabolismo , Neoplasias da Próstata/metabolismo , Serpinas/metabolismo , Células Estromais/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Quimiotaxia , Células Epiteliais/ultraestrutura , Exossomos/ultraestrutura , Feminino , Humanos , Neoplasias Inflamatórias Mamárias/genética , Neoplasias Inflamatórias Mamárias/ultraestrutura , Masculino , Camundongos , Células NIH 3T3 , Comunicação Parácrina , Neoplasias da Próstata/genética , Neoplasias da Próstata/ultraestrutura , Transporte Proteico , Interferência de RNA , Serpinas/genética , Células Estromais/ultraestrutura , Transfecção , Microambiente Tumoral , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA