Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36015950

RESUMO

In the paper, the lab-on-chip platform applicable for the long-term cultivation of human cancer cells, as a solution meeting the demands of the CubeSat biological missions, is presented. For the first time, the selected cancer cell lines-UM-UC-3 and RT 112 were cultured on-chip for up to 50 days. The investigation was carried out in stationary conditions (without medium microflow) in ambient temperature and utilizing the microflow perfusion system in the incubation chamber assuring typical cultivation atmosphere (37 °C). All the experiments were performed to imitate the conditions that are provided before the biological mission starts (waiting for the rocket launch) and when the actual experiment is initialized on a CubeSat board in space microgravity. The results of the tests showed appropriate performance of the lab-on-chip platform, especially in the context of material and technological biocompatibility. Cultured cells were characterized by adequate morphology-high attachment rate and visible signs of proliferation in each of the experimental stage. These results are a good basis for further tests of the lab-on-chip platform in both terrestrial and space conditions. At the end of the manuscript, the authors provide some considerations regarding a potential 3-Unit CubeSat biological mission launched with Virgin Orbit company. The lab-on-chip platform was modelled to fit a 2-Unit autonomous laboratory payload.


Assuntos
Microfluídica , Neoplasias , Linhagem Celular , Células Cultivadas , Exobiologia , Humanos , Dispositivos Lab-On-A-Chip , Perfusão
2.
Micromachines (Basel) ; 11(2)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32074950

RESUMO

This paper presents a full-featured microfluidic platform ensuring long-term culturing and behavioral analysis of the radically different biological micro-objects. The platform uses all-glass lab-chips and MEMS-based components providing dedicated micro-aquatic habitats for the cells, as well as their intentional disturbances on-chip. Specially developed software was implemented to characterize the micro-objects metrologically in terms of population growth and cells' size, shape, or migration activity. To date, the platform has been successfully applied for the culturing of freshwater microorganisms, fungi, cancer cells, and animal oocytes, showing their notable population growth, high mobility, and taxis mechanisms. For instance, circa 100% expansion of porcine oocytes cells, as well as nearly five-fold increase in E. gracilis population, has been achieved. These results are a good base to conduct further research on the platform versatile applications.

3.
Lab Chip ; 9(11): 1495-9, 2009 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-19458852

RESUMO

This paper describes how sixteen partners from eight different countries across Europe are working together in two EU projects focused on the development of a point of care system. This system uses disposable Lab on a Chips (LOCs) that carry out the complete assay from sample preparation to result interpretation of raw samples. The LOC is either embedded in a flexible motherboard with the form of a smartcard (Labcard) or in a Skinpatch. The first project, OPTOLABCARD, extended and tested the use of a thick photoresit (SU-8) as a structural material to manufacture LOCs by lamination. This project produced several examples where SU-8 microfluidic circuitry revealed itself as a viable material for several applications, such as the integration on chip of a Polymerase Chain Reaction (PCR) that includes sample concentration, PCR amplification and optical detection of Salmonella spp. using clinical samples. The ongoing project, LABONFOIL, is using two results of OPTOLABCARD: the sample concentration method and the capability to fabricate flexible and ultra thin LOCs based on sheets instead of wafers. This rupture from the limited and expensive wafer surface heritage allows the development of a platform where LOCs are big enough to include all the sample preparation subcomponents at a low price. These LOCs will be used in four point of care applications: environment, food, cancer and drug monitoring. The user will obtain the results of the tests by connecting the Labcard/Skinpatch reader to a very popular interface (a smartphone), creating a new instrument namely "The SmartBioPhone". All standard smartphone capabilities will be at the disposal of the point of care instrument by a simple click. In order to guarantee the future mass production of these LOCs, the project will develop a large dry film equipment where LOCs will be fabricated at a low cost.


Assuntos
Dispositivos Lab-On-A-Chip , Sistemas Microeletromecânicos/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito , Europa (Continente) , Cooperação Internacional , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA