Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Cell ; 187(12): 3006-3023.e26, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38744280

RESUMO

Centromeres are scaffolds for the assembly of kinetochores that ensure chromosome segregation during cell division. How vertebrate centromeres obtain a three-dimensional structure to accomplish their primary function is unclear. Using super-resolution imaging, capture-C, and polymer modeling, we show that vertebrate centromeres are partitioned by condensins into two subdomains during mitosis. The bipartite structure is found in human, mouse, and chicken cells and is therefore a fundamental feature of vertebrate centromeres. Super-resolution imaging and electron tomography reveal that bipartite centromeres assemble bipartite kinetochores, with each subdomain binding a distinct microtubule bundle. Cohesin links the centromere subdomains, limiting their separation in response to spindle forces and avoiding merotelic kinetochore-spindle attachments. Lagging chromosomes during cancer cell divisions frequently have merotelic attachments in which the centromere subdomains are separated and bioriented. Our work reveals a fundamental aspect of vertebrate centromere biology with implications for understanding the mechanisms that guarantee faithful chromosome segregation.


Assuntos
Centrômero , Coesinas , Cinetocoros , Mitose , Animais , Humanos , Camundongos , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Galinhas , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/química , Segregação de Cromossomos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo
3.
J Cell Sci ; 136(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36695333

RESUMO

The chromosome periphery is a network of proteins and RNAs that coats the outer surface of mitotic chromosomes. Despite the identification of new components, the functions of this complex compartment are poorly characterised. In this study, we identified a novel chromosome periphery-associated protein, CCDC86 (also known as cyclon). Using a combination of RNA interference, microscopy and biochemistry, we studied the functions of CCDC86 in mitosis. CCDC86 depletion resulted in partial disorganisation of the chromosome periphery with alterations in the localisation of Ki-67 (also known as MKI67) and nucleolin (NCL), and the formation of abnormal cytoplasmic aggregates. Furthermore, CCDC86-depleted cells displayed errors in chromosome alignment, altered spindle length and increased apoptosis. These results suggest that, within the chromosome periphery, different subcomplexes that include CCDC86, nucleolin and B23 (nucleophosmin or NPM1) are required for mitotic spindle regulation and correct kinetochore-microtubule attachments, thus contributing to chromosome segregation in mitosis. Moreover, we identified CCDC86 as a MYCN-regulated gene, the expression levels of which represent a powerful marker for prognostic outcomes in neuroblastoma.


Assuntos
Mitose , Fuso Acromático , Humanos , Antígeno Ki-67/genética , Fuso Acromático/genética , Fuso Acromático/metabolismo , Mitose/genética , Cromossomos/metabolismo , Segregação de Cromossomos/genética , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Células HeLa
4.
Pept Sci (Hoboken) ; 114(3): e24254, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35864841

RESUMO

Genetically-encoded cyclic peptide libraries allow rapid in vivo screens for inhibitors of any target protein of interest. In particular, the Split Intein Circular Ligation of Protein and Peptides (SICLOPPS) system exploits spontaneous protein splicing of inteins to produce intracellular cyclic peptides. A previous SICLOPPS screen against Aurora B kinase, which plays a critical role during chromosome segregation, identified several candidate inhibitors that we sought to recapitulate by chemical synthesis. We describe the syntheses of cyclic peptide hits and analogs via solution-phase macrocyclization of side chain-protected linear peptides obtained from standard solid-phase peptide synthesis. Cyclic peptide targets, including cyclo-[CTWAR], were designed to match both the variable portions and conserved cysteine residue of their genetically-encoded counterparts. Synthetic products were characterized by tandem high-resolution mass spectrometry to analyze a combination of exact mass, isotopic pattern, and collisional dissociation-induced fragmentation pattern. The latter analyses facilitated the distinction between targets and oligomeric side products, and served to confirm peptidic sequences in a manner that can be readily extended to analyses of complex biological samples. This alternative chemical synthesis approach for cyclic peptides allows cost-effective validation and facile chemical elaboration of hit candidates from SICLOPPS screens.

5.
Mol Cell ; 82(3): 696-708.e4, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35090599

RESUMO

We have used a combination of chemical genetics, chromatin proteomics, and imaging to map the earliest chromatin transactions during vertebrate cell entry into mitosis. Chicken DT40 CDK1as cells undergo synchronous mitotic entry within 15 min following release from a 1NM-PP1-induced arrest in late G2. In addition to changes in chromatin association with nuclear pores and the nuclear envelope, earliest prophase is dominated by changes in the association of ribonucleoproteins with chromatin, particularly in the nucleolus, where pre-rRNA processing factors leave chromatin significantly before RNA polymerase I. Nuclear envelope barrier function is lost early in prophase, and cytoplasmic proteins begin to accumulate on the chromatin. As a result, outer kinetochore assembly appears complete by nuclear envelope breakdown (NEBD). Most interphase chromatin proteins remain associated with chromatin until NEBD, after which their levels drop sharply. An interactive proteomic map of chromatin transactions during mitotic entry is available as a resource at https://mitoChEP.bio.ed.ac.uk.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Cromossomos , DNA/metabolismo , Linfoma de Células B/metabolismo , Proteínas Nucleares/metabolismo , Prófase , Proteoma , Proteômica , Animais , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Linhagem Celular Tumoral , Galinhas , Cromatina/genética , DNA/genética , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Linfoma de Células B/genética , Linfoma de Células B/patologia , Proteínas Nucleares/genética , Ligação Proteica , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Fatores de Tempo
6.
Oncotarget ; 12(15): 1444-1456, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34316326

RESUMO

Telomerase/telomere-targeting therapy is a potentially promising approach for cancer treatment because even transient telomere dysfunction can induce chromosomal instability (CIN) and may be a barrier to tumor growth. We recently developed a dual-HAC (Human Artificial Chromosome) assay that enables identification and ranking of compounds that induce CIN as a result of telomere dysfunction. This assay is based on the use of two isogenic HT1080 cell lines, one carrying a linear HAC (containing telomeres) and the other carrying a circular HAC (lacking telomeres). Disruption of telomeres in response to drug treatment results in specific destabilization of the linear HAC. Results: In this study, we used the dual-HAC assay for the analysis of the platinum-derived G4 ligand Pt-tpy and five of its derivatives: Pt-cpym, Pt-vpym, Pt-ttpy, Pt(PA)-tpy, and Pt-BisQ. Our analysis revealed four compounds, Pt-tpy, Pt-ttpy, Pt-vpym and Pt-cpym, that induce a specific loss of a linear but not a circular HAC. Increased CIN after treatment by these compounds correlates with the induction of double-stranded breaks (DSBs) predominantly localized at telomeres and reflecting telomere-associated DNA damage. Analysis of the mitotic phenotypes induced by these drugs revealed an elevated rate of chromatin bridges (CBs) in late mitosis and cytokinesis. These terpyridine platinum-derived G4 ligands are promising compounds for cancer treatment.

7.
ACS Synth Biol ; 9(12): 3267-3287, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33289546

RESUMO

Human artificial chromosomes (HACs) are important tools for epigenetic engineering, for measuring chromosome instability (CIN), and for possible gene therapy. However, their use in the latter is potentially limited because the input HAC-seeding DNA can undergo an unpredictable series of rearrangements during HAC formation. As a result, after transfection and HAC formation, each cell clone contains a HAC with a unique structure that cannot be precisely predicted from the structure of the HAC-seeding DNA. Although it has been reported that these rearrangements can happen, the timing and mechanism of their formation has yet to be described. Here we synthesized a HAC-seeding DNA with two distinct structural domains and introduced it into HT1080 cells. We characterized a number of HAC-containing clones and subclones to track DNA rearrangements during HAC establishment. We demonstrated that rearrangements can occur early during HAC formation. Subsequently, the established HAC genomic organization is stably maintained across many cell generations. Thus, early stages in HAC formation appear to at least occasionally involve a process of DNA shredding and shuffling that resembles chromothripsis, an important hallmark of many cancer types. Understanding these events during HAC formation has critical implications for future efforts aimed at synthesizing and exploiting synthetic human chromosomes.


Assuntos
Cromossomos Artificiais Humanos/metabolismo , Rearranjo Gênico/fisiologia , Linhagem Celular Tumoral , Centrômero/metabolismo , Proteína B de Centrômero/genética , Instabilidade Cromossômica , Epigênese Genética , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos
8.
Cell Rep ; 32(12): 108177, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32966795

RESUMO

Cells coordinate interphase-to-mitosis transition, but recurrent cytogenetic lesions appear at common fragile sites (CFSs), termed CFS expression, in a tissue-specific manner after replication stress, marking regions of instability in cancer. Despite such a distinct defect, no model fully provides a molecular explanation for CFSs. We show that CFSs are characterized by impaired chromatin folding, manifesting as disrupted mitotic structures visible with molecular fluorescence in situ hybridization (FISH) probes in the presence and absence of replication stress. Chromosome condensation assays reveal that compaction-resistant chromatin lesions persist at CFSs throughout the cell cycle and mitosis. Cytogenetic and molecular lesions are marked by faulty condensin loading at CFSs, a defect in condensin-I-mediated compaction, and are coincident with mitotic DNA synthesis (MIDAS). This model suggests that, in conditions of exogenous replication stress, aberrant condensin loading leads to molecular defects and CFS expression, concomitantly providing an environment for MIDAS, which, if not resolved, results in chromosome instability.


Assuntos
Adenosina Trifosfatases/metabolismo , Sítios Frágeis do Cromossomo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Estresse Fisiológico , Afidicolina/farmacologia , Cromatina/metabolismo , DNA/biossíntese , Replicação do DNA/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Fase G2/efeitos dos fármacos , Células HCT116 , Humanos , Masculino , Mitose/efeitos dos fármacos , Modelos Biológicos , Estresse Fisiológico/efeitos dos fármacos
9.
J Cell Sci ; 133(14)2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32591481

RESUMO

Cell division ends when two daughter cells physically separate via abscission, the cleavage of the intercellular bridge. It is not clear how the anti-parallel microtubule bundles bridging daughter cells are severed. Here, we present a novel abscission mechanism. We identified chromokinesin KIF4A, which is adjacent to the midbody during cytokinesis, as being required for efficient abscission. KIF4A is regulated by post-translational modifications. We evaluated modification of KIF4A by the ubiquitin-like protein SUMO. We mapped lysine 460 in KIF4A as the SUMO acceptor site and employed CRISPR-Cas9-mediated genome editing to block SUMO conjugation of endogenous KIF4A. Failure to SUMOylate this site in KIF4A delayed cytokinesis. SUMOylation of KIF4A enhanced the affinity for the microtubule destabilizer stathmin 1 (STMN1). We here present a new level of abscission regulation through the dynamic interactions between KIF4A and STMN1 as controlled by SUMO modification of KIF4A.


Assuntos
Mitose , Estatmina , Citocinese/genética , Proteínas de Ligação a DNA , Células HeLa , Humanos , Cinesinas/genética , Proteínas Nucleares , Estatmina/genética
10.
J Cell Sci ; 132(21)2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31601613

RESUMO

Timely and precise control of Aurora B kinase, the chromosomal passenger complex (CPC) catalytic subunit, is essential for accurate chromosome segregation and cytokinesis. Post-translational modifications of CPC subunits are directly involved in controlling Aurora B activity. Here, we identified a highly conserved acidic STD-rich motif of INCENP that is phosphorylated during mitosis in vivo and by Plk1 in vitro and is involved in controlling Aurora B activity. By using an INCENP conditional-knockout cell line, we show that impairing the phosphorylation status of this region disrupts chromosome congression and induces cytokinesis failure. In contrast, mimicking constitutive phosphorylation not only rescues cytokinesis but also induces ectopic furrows and contractile ring formation in a Plk1- and ROCK1-dependent manner independent of cell cycle and microtubule status. Our experiments identify the phospho-regulation of the INCENP STD motif as a novel mechanism that is key for chromosome alignment and cytokinesis.This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Microtúbulos/metabolismo , Mutação/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/metabolismo , Citocinese/fisiologia , Humanos , Mitose/fisiologia , Quinases Associadas a rho/metabolismo , Quinase 1 Polo-Like
11.
Genome Res ; 29(10): 1719-1732, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31515286

RESUMO

One of the hallmarks of cancer is chromosome instability (CIN), which leads to aneuploidy, translocations, and other chromosome aberrations. However, in the vast majority of human tumors the molecular basis of CIN remains unknown, partly because not all genes controlling chromosome transmission have yet been identified. To address this question, we developed an experimental high-throughput imaging (HTI) siRNA assay that allows the identification of novel CIN genes. Our method uses a human artificial chromosome (HAC) expressing the GFP transgene. When this assay was applied to screen an siRNA library of protein kinases, we identified PINK1, TRIO, IRAK1, PNCK, and TAOK1 as potential novel genes whose knockdown induces various mitotic abnormalities and results in chromosome loss. The HAC-based assay can be applied for screening different siRNA libraries (cell cycle regulation, DNA damage response, epigenetics, and transcription factors) to identify additional genes involved in CIN. Identification of the complete spectrum of CIN genes will reveal new insights into mechanisms of chromosome segregation and may expedite the development of novel therapeutic strategies to target the CIN phenotype in cancer cells.


Assuntos
Instabilidade Cromossômica/genética , Cromossomos Humanos/genética , Proteínas Quinases/genética , RNA Interferente Pequeno/genética , Aneuploidia , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/genética , Linhagem Celular Tumoral , Cromossomos Artificiais Humanos/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Mitose/genética , Proteínas Quinases/isolamento & purificação , Proteínas Serina-Treonina Quinases/genética , RNA de Cadeia Dupla/genética , Transgenes , Translocação Genética/genética
12.
Cancer Res ; 78(21): 6282-6296, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30166419

RESUMO

The targeting of telomerase and telomere maintenance mechanisms represents a promising therapeutic approach for various types of cancer. In this work, we designed a new protocol to screen for and rank the efficacy of compounds specifically targeting telomeres and telomerase. This approach used two isogenic cell lines containing a circular human artificial chromosome (HAC, lacking telomeres) and a linear HAC (containing telomeres) marked with the EGFP transgene; compounds that target telomerase or telomeres should preferentially induce loss of the linear HAC but not the circular HAC. Our assay allowed quantification of chromosome loss by routine flow cytometry. We applied this dual-HAC assay to rank a set of known and newly developed compounds, including G-quadruplex (G4) ligands. Among the latter group, two compounds, Cu-ttpy and Pt-ttpy, induced a high rate of linear HAC loss with no significant effect on the mitotic stability of a circular HAC. Analysis of the mitotic phenotypes induced by these drugs revealed an elevated rate of chromatin bridges in late mitosis and cytokinesis as well as UFB (ultrafine bridges). Chromosome loss after Pt-ttpy or Cu-ttpy treatment correlated with the induction of telomere-associated DNA damage. Overall, this platform enables identification and ranking of compounds that greatly increase chromosome mis-segregation rates as a result of telomere dysfunction and may expedite the development of new therapeutic strategies for cancer treatment.Significance: An assay provides a unique opportunity to screen thousands of chemical compounds for their ability to inactivate replication of telomeric ends in cancer cells and holds potential to lay the foundation for the discovery of new treatments for cancer. Cancer Res; 78(21); 6282-96. ©2018 AACR.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Telomerase/antagonistas & inibidores , Telômero/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Cromatina , Cromossomos , Cromossomos Artificiais Humanos , Dano ao DNA , Desenho de Fármacos , Células HCT116 , Humanos , Ácidos Hidroxâmicos/farmacologia , Mitose , Neoplasias/genética , Transgenes
13.
ACS Synth Biol ; 7(9): 1974-1989, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30075081

RESUMO

Since their description in the late 1990s, Human Artificial Chromosomes (HACs) bearing functional kinetochores have been considered as promising systems for gene delivery and expression. More recently a HAC assembled from a synthetic alphoid DNA array has been exploited in studies of centromeric chromatin and in assessing the impact of different epigenetic modifications on kinetochore structure and function in human cells. This HAC was termed the alphoidtetO-HAC, as the synthetic monomers each contained a tetO sequence in place of the CENP-B box that can be targeted specifically with tetR-fusion proteins. Studies in which the kinetochore chromatin of the alphoidtetO-HAC was specifically modified, revealed that heterochromatin is incompatible with centromere function and that centromeric transcription is important for centromere assembly and maintenance. In addition, the alphoidtetO-HAC was modified to carry large gene inserts that are expressed in target cells under conditions that recapitulate the physiological regulation of endogenous loci. Importantly, the phenotypes arising from stable gene expression can be reversed when cells are "cured" of the HAC by inactivating its kinetochore in proliferating cell populations, a feature that provides a control for phenotypic changes attributed to expression of HAC-encoded genes. AlphoidtetO-HAC-based technology has also been used to develop new drug screening and assessment strategies to manipulate the CIN phenotype in cancer cells. In summary, the alphoidtetO-HAC is proving to be a versatile tool for studying human chromosome transactions and structure as well as for genome and cancer studies.


Assuntos
Centrômero/metabolismo , Cromossomos Artificiais Humanos/genética , Neoplasias/patologia , Animais , Proteína B de Centrômero/genética , Proteína B de Centrômero/metabolismo , Instabilidade Cromossômica , Cromossomos Artificiais Humanos/metabolismo , Técnicas de Transferência de Genes , Histonas/metabolismo , Humanos , Neoplasias/genética
14.
Nat Commun ; 9(1): 2071, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789663

RESUMO

The original PDF version of this Article listed the authors as "Marcus J.G.W. Ladds," where it should have read "Marcus J. G. W. Ladds, Ingeborg M. M. van Leeuwen, Catherine J. Drummond et al.#".Also in the PDF version, it was incorrectly stated that "Correspondence and requests for materials should be addressed to S. Lín.", instead of the correct "Correspondence and requests for materials should be addressed to S. Laín."This has been corrected in the PDF version of the Article. The HTML version was correct from the time of publication.

15.
Nat Commun ; 9(1): 1107, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549331

RESUMO

The development of non-genotoxic therapies that activate wild-type p53 in tumors is of great interest since the discovery of p53 as a tumor suppressor. Here we report the identification of over 100 small-molecules activating p53 in cells. We elucidate the mechanism of action of a chiral tetrahydroindazole (HZ00), and through target deconvolution, we deduce that its active enantiomer (R)-HZ00, inhibits dihydroorotate dehydrogenase (DHODH). The chiral specificity of HZ05, a more potent analog, is revealed by the crystal structure of the (R)-HZ05/DHODH complex. Twelve other DHODH inhibitor chemotypes are detailed among the p53 activators, which identifies DHODH as a frequent target for structurally diverse compounds. We observe that HZ compounds accumulate cancer cells in S-phase, increase p53 synthesis, and synergize with an inhibitor of p53 degradation to reduce tumor growth in vivo. We, therefore, propose a strategy to promote cancer cell killing by p53 instead of its reversible cell cycle arresting effect.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Indazóis/farmacologia , Neoplasias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Di-Hidro-Orotato Desidrogenase , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Proteólise/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética
16.
EMBO J ; 37(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29467217

RESUMO

The chromosomal passenger complex (CPC) is directed to centromeres during mitosis via binding to H3T3ph and Sgo1. Whether and how heterochromatin protein 1α (HP1α) influences CPC localisation and function during mitotic entry is less clear. Here, we alter HP1α dynamics by fusing it to a CENP-B DNA-binding domain. Tethered HP1 strongly recruits the CPC, destabilising kinetochore-microtubule interactions and activating the spindle assembly checkpoint. During mitotic exit, the tethered HP1 traps active CPC at centromeres. These HP1-CPC clusters remain catalytically active throughout the subsequent cell cycle. We also detect interactions between endogenous HP1 and the CPC during G2 HP1α and HP1γ cooperate to recruit the CPC to active foci in a CDK1-independent process. Live cell tracking with Fab fragments reveals that H3S10ph appears well before H3T3 is phosphorylated by Haspin kinase. Our results suggest that HP1 may concentrate and activate the CPC at centromeric heterochromatin in G2 before Aurora B-mediated phosphorylation of H3S10 releases HP1 from chromatin and allows pathways dependent on H3T3ph and Sgo1 to redirect the CPC to mitotic centromeres.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Heterocromatina/metabolismo , Mitose , Linhagem Celular Tumoral , Centrômero/metabolismo , Homólogo 5 da Proteína Cromobox , Humanos , Fosforilação
17.
J Cell Sci ; 131(4)2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29361541

RESUMO

The requirement for condensin in chromosome formation in somatic cells remains unclear, as imperfectly condensed chromosomes do form in cells depleted of condensin by conventional methodologies. In order to dissect the roles of condensin at different stages of vertebrate mitosis, we have established a versatile cellular system that combines auxin-mediated rapid degradation with chemical genetics to obtain near-synchronous mitotic entry of chicken DT40 cells in the presence and absence of condensin. We analyzed the outcome by live- and fixed-cell microscopy methods, including serial block face scanning electron microscopy with digital reconstruction. Following rapid depletion of condensin, chromosomal defects were much more obvious than those seen after a slow depletion of condensin. The total mitotic chromatin volume was similar to that in control cells, but a single mass of mitotic chromosomes was clustered at one side of a bent mitotic spindle. Cultures arrest at prometaphase, eventually exiting mitosis without segregating chromosomes. Experiments where the auxin concentration was titrated showed that different condensin levels are required for anaphase chromosome segregation and formation of a normal chromosome architecture.This article has an associated First Person interview with the first author of the paper.


Assuntos
Adenosina Trifosfatases/genética , Cromatina/ultraestrutura , Cromossomos/ultraestrutura , Proteínas de Ligação a DNA/genética , Mitose/genética , Complexos Multiproteicos/genética , Adenosina Trifosfatases/metabolismo , Animais , Galinhas , Cromatina/genética , Cromatina/metabolismo , Aberrações Cromossômicas , Segregação de Cromossomos/genética , Cromossomos/genética , Cromossomos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ácidos Indolacéticos/farmacologia , Microscopia Eletrônica de Varredura , Complexos Multiproteicos/metabolismo , Proteólise/efeitos dos fármacos
18.
Science ; 359(6376)2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29348367

RESUMO

Mitotic chromosomes fold as compact arrays of chromatin loops. To identify the pathway of mitotic chromosome formation, we combined imaging and Hi-C analysis of synchronous DT40 cell cultures with polymer simulations. Here we show that in prophase, the interphase organization is rapidly lost in a condensin-dependent manner, and arrays of consecutive 60-kilobase (kb) loops are formed. During prometaphase, ~80-kb inner loops are nested within ~400-kb outer loops. The loop array acquires a helical arrangement with consecutive loops emanating from a central "spiral staircase" condensin scaffold. The size of helical turns progressively increases to ~12 megabases during prometaphase. Acute depletion of condensin I or II shows that nested loops form by differential action of the two condensins, whereas condensin II is required for helical winding.


Assuntos
Cromossomos/química , Cromossomos/genética , Mitose , Adenosina Trifosfatases/metabolismo , Animais , Linhagem Celular , Biologia Computacional , Proteínas de Ligação a DNA/metabolismo , Genômica , Interfase , Complexos Multiproteicos/metabolismo , Prometáfase , Prófase , Xenopus laevis
19.
ACS Synth Biol ; 7(1): 63-74, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28799737

RESUMO

The production of cells capable of carrying multiple transgenes to Mb-size genomic loci has multiple applications in biomedicine and biotechnology. In order to achieve this goal, three key steps are required: (i) cloning of large genomic segments; (ii) insertion of multiple DNA blocks at a precise location and (iii) the capability to eliminate the assembled region from cells. In this study, we designed the iterative integration system (IIS) that utilizes recombinases Cre, ΦC31 and ΦBT1, and combined it with a human artificial chromosome (HAC) possessing a regulated kinetochore (alphoidtetO-HAC). We have demonstrated that the IIS-alphoidtetO-HAC system is a valuable genetic tool by reassembling a functional gene from multiple segments on the HAC. IIS-alphoidtetO-HAC has several notable advantages over other artificial chromosome-based systems. This includes the potential to assemble an unlimited number of genomic DNA segments; a DNA assembly process that leaves only a small insertion (<60 bp) scar between adjacent DNA, allowing genes reassembled from segments to be spliced correctly; a marker exchange system that also changes cell color, and counter-selection markers at each DNA insertion step, simplifying selection of correct clones; and presence of an error proofing mechanism to remove cells with misincorporated DNA segments, which improves the integrity of assembly. In addition, the IIS-alphoidtetO-HAC carrying a locus of interest is removable, offering the unique possibility to revert the cell line to its pretransformed state and compare the phenotypes of human cells with and without a functional copy of a gene(s). Thus, IIS-alphoidtetO-HAC allows investigation of complex biomedical pathways, gene(s) regulation, and has the potential to engineer synthetic chromosomes with a predetermined set of genes.


Assuntos
Cromossomos Artificiais Humanos/genética , DNA/metabolismo , Integrases/genética , Cinetocoros/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , DNA/genética , Humanos , Hibridização in Situ Fluorescente , Integrases/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Recombinação Genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética
20.
Open Biol ; 7(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28903997

RESUMO

How eukaryotic chromosomes are compacted during mitosis has been a leading question in cell biology since the nineteenth century. Non-histone proteins such as condensin complexes contribute to chromosome shaping, but appear not to be necessary for mitotic chromatin compaction. Histone modifications are known to affect chromatin structure. As histones undergo major changes in their post-translational modifications during mitotic entry, we speculated that the spectrum of cell-cycle-specific histone modifications might contribute to chromosome compaction during mitosis. To test this hypothesis, we isolated core histones from interphase and mitotic cells and reconstituted chromatin with them. We used mass spectrometry to show that key post-translational modifications remained intact during our isolation procedure. Light, atomic force and transmission electron microscopy analysis showed that chromatin assembled from mitotic histones has a much greater tendency to aggregate than chromatin assembled from interphase histones, even under low magnesium conditions where interphase chromatin remains as separate beads-on-a-string structures. These observations are consistent with the hypothesis that mitotic chromosome formation is a two-stage process with changes in the spectrum of histone post-translational modifications driving mitotic chromatin compaction, while the action of non-histone proteins such as condensin may then shape the condensed chromosomes into their classic mitotic morphology.


Assuntos
Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Histonas/metabolismo , Linfócitos/metabolismo , Processamento de Proteína Pós-Traducional , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Cátions Bivalentes , Linhagem Celular Tumoral , Galinhas , Cromatina/efeitos dos fármacos , Cromatina/ultraestrutura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histonas/genética , Humanos , Interfase/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Linfócitos/ultraestrutura , Magnésio/farmacologia , Microscopia de Força Atômica , Mitose/efeitos dos fármacos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Nocodazol/farmacologia , Fosforilação , Moduladores de Tubulina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA