Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38587317

RESUMO

Microsatellite-unstable (MSI) cancers require WRN helicase to resolve replication stress due to expanded DNA (TA)n-dinucleotide repeats. WRN is a promising synthetic lethal target for MSI tumours, and WRN inhibitors are in development. Here, we used CRISPR-Cas9 base editing to map WRN residues critical for MSI cells, validating the helicase domain as the primary drug target. Fragment-based screening led to the development of potent and highly selective WRN helicase covalent inhibitors. These compounds selectively suppressed MSI model growth In vitro and In vivo by mimicking WRN loss, inducing DNA double-strand breaks at expanded TA-repeats and DNA damage. Assessment of biomarkers in preclinical models linked TA-repeat expansions and mismatch repair (MMR) alterations to compound activity. Efficacy was confirmed in immunotherapy-resistant organoids and patient-derived xenograft (PDX) models. The discovery of potent, selective covalent WRN inhibitors provides proof of concept for synthetic-lethal targeting of WRN in MSI cancer and tools to dissect WRN biology.

2.
Mol Syst Biol ; 20(4): 458-474, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454145

RESUMO

Complex disease phenotypes often span multiple molecular processes. Functional characterization of these processes can shed light on disease mechanisms and drug effects. Thermal Proteome Profiling (TPP) is a mass-spectrometry (MS) based technique assessing changes in thermal protein stability that can serve as proxies of functional protein changes. These unique insights of TPP can complement those obtained by other omics technologies. Here, we show how TPP can be integrated with phosphoproteomics and transcriptomics in a network-based approach using COSMOS, a multi-omics integration framework, to provide an integrated view of transcription factors, kinases and proteins with altered thermal stability. This allowed us to recover consequences of Poly (ADP-ribose) polymerase (PARP) inhibition in ovarian cancer cells on cell cycle and DNA damage response as well as interferon and hippo signaling. We found that TPP offers a complementary perspective to other omics data modalities, and that its integration allowed us to obtain a more complete molecular overview of PARP inhibition. We anticipate that this strategy can be used to integrate functional proteomics with other omics to study molecular processes.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Proteoma , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Multiômica , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Proteômica/métodos
3.
Mol Cell Proteomics ; 21(6): 100241, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35525403

RESUMO

Mass spectrometry-based secretomics approaches frequently utilize serum-free culture conditions to circumvent serum-induced interference and to increase analytical depth. However, this can negatively affect a wide range of cellular functions and cell viability. These effects become particularly apparent when investigating transcriptionally regulated secretion events and feedback-loops in response to perturbations that require 48 h or more to fully manifest. We present an "interval-based" secretomics workflow, which determines protein secretion rates in short serum-free time windows. Relative quantification using tandem mass tags enables precise monitoring of time-dependent changes. We applied this approach to determine temporal profiles of protein secretion in the hepatocyte model cell lines HepG2 and HepaRG after stimulation of the acute-phase response (APR) by the cytokines IL1b and IL6. While the popular hepatocarcinoma cell line HepG2 showed an incomplete APR, secretion patterns derived from differentiated HepaRG cells recapitulated the expected APR more comprehensively. For several APR response proteins, substantial secretion was only observed after 72 h, a time window at which cell fitness is substantially impaired under serum-free cell culture conditions. The interval-based secretomics approach enabled the first comprehensive analysis of time-dependent secretion of liver cell models in response to these proinflammatory cytokines. The extended time range facilitated the observation of distinct chronological phases and cytokine-dependent secretion phenotypes of the APR. IL1b directed the APR toward pathogen defense over three distinct phases-chemotaxis, effector, clearance-while IL6 directed the APR toward regeneration. Protein shedding on the cell surface was pronounced upon IL1b stimulation, and small molecule inhibition of ADAM and matrix metalloproteases identified induced as well as constitutive shedding events. Inhibition of ADAM proteases with TAPI-0 resulted in reduced shedding of the sorting receptor SORT1, and an attenuated cytokine response suggesting a direct link between cell surface shedding and cytokine secretion rates.


Assuntos
Reação de Fase Aguda , Interleucina-6 , Proteínas de Fase Aguda , Citocinas , Hepatócitos/metabolismo , Humanos
4.
Nat Cancer ; 2(10): 1002-1017, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34790902

RESUMO

DNA methylation, a key epigenetic driver of transcriptional silencing, is universally dysregulated in cancer. Reversal of DNA methylation by hypomethylating agents, such as the cytidine analogs decitabine or azacytidine, has demonstrated clinical benefit in hematologic malignancies. These nucleoside analogs are incorporated into replicating DNA where they inhibit DNA cytosine methyltransferases DNMT1, DNMT3A and DNMT3B through irreversible covalent interactions. These agents induce notable toxicity to normal blood cells thus limiting their clinical doses. Herein we report the discovery of GSK3685032, a potent first-in-class DNMT1-selective inhibitor that was shown via crystallographic studies to compete with the active-site loop of DNMT1 for penetration into hemi-methylated DNA between two CpG base pairs. GSK3685032 induces robust loss of DNA methylation, transcriptional activation and cancer cell growth inhibition in vitro. Due to improved in vivo tolerability compared with decitabine, GSK3685032 yields superior tumor regression and survival mouse models of acute myeloid leukemia.


Assuntos
Azacitidina , Leucemia Mieloide Aguda , Animais , Azacitidina/farmacologia , DNA/metabolismo , Metilação de DNA , Metilases de Modificação do DNA/genética , Decitabina/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos
5.
J Immunol ; 207(2): 555-568, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34233910

RESUMO

As key cells of the immune system, macrophages coordinate the activation and regulation of the immune response. Macrophages present a complex phenotype that can vary from homeostatic, proinflammatory, and profibrotic to anti-inflammatory phenotypes. The factors that drive the differentiation from monocyte to macrophage largely define the resultant phenotype, as has been shown by the differences found in M-CSF- and GM-CSF-derived macrophages. We explored alternative inflammatory mediators that could be used for in vitro differentiation of human monocytes into macrophages. IFN-γ is a potent inflammatory mediator produced by lymphocytes in disease and infections. We used IFN-γ to differentiate human monocytes into macrophages and characterized the cells at a functional and proteomic level. IFN-γ alone was sufficient to generate macrophages (IFN-γ Mϕ) that were phagocytic and responsive to polarization. We demonstrate that IFN-γ Mϕ are potent activators of T lymphocytes that produce IL-17 and IFN-γ. We identified potential markers (GBP-1, IP-10, IL-12p70, and IL-23) of IFN-γ Mϕ and demonstrate that these markers are enriched in the skin of patients with inflamed psoriasis. Collectively, we show that IFN-γ can drive human monocyte to macrophage differentiation, leading to bona fide macrophages with inflammatory characteristics.


Assuntos
Diferenciação Celular/fisiologia , Inflamação/metabolismo , Interferon gama/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Psoríase/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Humanos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fenótipo , Proteômica/métodos , Pele/metabolismo
6.
Nat Biotechnol ; 38(3): 303-308, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31959954

RESUMO

Monitoring drug-target interactions with methods such as the cellular thermal-shift assay (CETSA) is well established for simple cell systems but remains challenging in vivo. Here we introduce tissue thermal proteome profiling (tissue-TPP), which measures binding of small-molecule drugs to proteins in tissue samples from drug-treated animals by detecting changes in protein thermal stability using quantitative mass spectrometry. We report organ-specific, proteome-wide thermal stability maps and derive target profiles of the non-covalent histone deacetylase inhibitor panobinostat in rat liver, lung, kidney and spleen and of the B-Raf inhibitor vemurafenib in mouse testis. In addition, we devised blood-CETSA and blood-TPP and applied it to measure target and off-target engagement of panobinostat and the BET family inhibitor JQ1 directly in whole blood. Blood-TPP analysis of panobinostat confirmed its binding to known targets and also revealed thermal stabilization of the zinc-finger transcription factor ZNF512. These methods will help to elucidate the mechanisms of drug action in vivo.


Assuntos
Sangue/metabolismo , Proteoma/química , Proteoma/metabolismo , Bibliotecas de Moléculas Pequenas/administração & dosagem , Animais , Azepinas/administração & dosagem , Azepinas/farmacologia , Células Hep G2 , Humanos , Rim/química , Rim/metabolismo , Fígado/química , Fígado/metabolismo , Pulmão/química , Pulmão/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Especificidade de Órgãos , Panobinostat/administração & dosagem , Panobinostat/farmacologia , Estabilidade Proteica , Ratos , Bibliotecas de Moléculas Pequenas/farmacologia , Baço/química , Baço/metabolismo , Testículo/química , Testículo/metabolismo , Termodinâmica , Triazóis/administração & dosagem , Triazóis/farmacologia , Vemurafenib/administração & dosagem , Vemurafenib/farmacologia
7.
Sci Rep ; 9(1): 14159, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578349

RESUMO

Kinobeads are a set of promiscuous kinase inhibitors immobilized on sepharose beads for the comprehensive enrichment of endogenously expressed protein kinases from cell lines and tissues. These beads enable chemoproteomics profiling of kinase inhibitors of interest in dose-dependent competition studies in combination with quantitative mass spectrometry. We present improved bead matrices that capture more than 350 protein kinases and 15 lipid kinases from human cell lysates, respectively. A multiplexing strategy is suggested that enables determination of apparent dissociation constants in a single mass spectrometry experiment. Miniaturization of the procedure enabled determining the target selectivity of the clinical BCR-ABL inhibitor dasatinib in peripheral blood mononuclear cell (PBMC) lysates from individual donors. Profiling of a set of Jak kinase inhibitors revealed kinase off-targets from nearly all kinase families underpinning the need to profile kinase inhibitors against the kinome. Potently bound off-targets of clinical inhibitors suggest polypharmacology, e.g. through MRCK alpha and beta, which bind to decernotinib with nanomolar affinity.


Assuntos
Dasatinibe/farmacologia , Janus Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteoma/metabolismo , Proteômica/métodos , Animais , Cromatografia de Afinidade/métodos , Cães , Células HEK293 , Humanos , Janus Quinases/metabolismo , Células K562 , Camundongos , Microesferas , Monócitos/metabolismo , Ligação Proteica , Proteoma/química , Sefarose/análogos & derivados , Especificidade por Substrato
8.
Angew Chem Int Ed Engl ; 58(48): 17322-17327, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31518032

RESUMO

The CDK family plays a crucial role in the control of the cell cycle. Dysregulation and mutation of the CDKs has been implicated in cancer and the CDKs have been investigated extensively as potential therapeutic targets. Selective inhibition of specific isoforms of the CDKs is crucial to achieve therapeutic effect while minimising toxicity. We present a group of photoaffinity probes designed to bind to the family of CDKs. The site of crosslinking of the optimised probe, as well as its ability to enrich members of the CDK family from cell lysates, was investigated. In a proof of concept study, we subsequently developed a photoaffinity probe-based competition assay to profile CDK inhibitors. We anticipate that this approach will be widely applicable to the study of small molecule binding to protein families of interest.


Assuntos
Marcadores de Afinidade/química , Antineoplásicos/química , Reagentes de Ligações Cruzadas/química , Quinases Ciclina-Dependentes/antagonistas & inibidores , Isoformas de Proteínas/química , Inibidores de Proteínas Quinases/química , Ligação Competitiva , Ensaios de Seleção de Medicamentos Antitumorais , Espectrometria de Massas , Estrutura Molecular , Processos Fotoquímicos , Roscovitina , Relação Estrutura-Atividade
9.
J Pharmacol Exp Ther ; 370(2): 269-277, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31175220

RESUMO

Cabotegravir, a novel integrase inhibitor under development for treatment and prevention of HIV, is primarily metabolized by UDP-glucuronosyltransferase (UGT)1A1 and UGT1A9 to a direct ether glucuronide metabolite. The aim of these studies was to elucidate the mechanistic basis of cabotegravir-glucuronide disposition in humans. Cabotegravir glucuronidation was predominantly hepatic (>95%) with minimal intestinal and renal contribution. Rat liver perfusions demonstrated that cabotegravir-glucuronide formed in the liver undergoes comparable biliary and sinusoidal excretion, consistent with high concentrations of the glucuronide in human bile and urine. Cabotegravir-glucuronide biliary excretion was mediated by multidrug resistance-associated protein (MRP)2 (not transported by breast cancer resistance protein or P-glycoprotein), whereas hepatic basolateral excretion into sinusoidal blood was via both MRP3 [fraction transport (Ft) = 0.81] and MRP4 (Ft = 0.19). Surprisingly, despite high urinary recovery of hepatically-formed cabotegravir-glucuronide, metabolite levels in circulation were negligible, a phenomenon consistent with rapid metabolite clearance. Cabotegravir-glucuronide was transported by hepatic uptake transporters organic anion-transporting (OAT) polypeptide (OATP)1B1 and OATP1B3; however, metabolite clearance by hepatic uptake from circulation was low (2.7% of hepatic blood flow) and unable to explain the minimal systemic exposure. Instead, circulating cabotegravir-glucuronide undergoes efficient renal clearance, where uptake into the proximal tubule would be mediated by OAT3 (not transported by OAT1), and subsequent secretion into urine by MRP2 (Ft = 0.66) and MRP4 (Ft = 0.34). These studies provide mechanistic insight into the disposition of cabotegravir-glucuronide, a hepatically-formed metabolite with appreciable urinary recovery and minimal systemic exposure, including fractional contribution of redundant transporters to any given process based on quantitative proteomics. SIGNIFICANCE STATEMENT: The role of membrane transporters in metabolite disposition, especially glucuronides, and as sites of unexpected drug-drug interactions, which alter drug efficacy and safety, has been established. Cabotegravir-glucuronide, formed predominantly by direct glucuronidation of parent drug in liver, was the major metabolite recovered in human urine (27% of oral dose) but was surprisingly not detected in systemic circulation. To our knowledge, this is the first mechanistic description of this phenomenon for a major hepatically-formed metabolite to be excreted in the urine to a large extent, but not circulate at detectable levels. The present study elucidates the mechanistic basis of cabotegravir-glucuronide disposition in humans. Specific hepatic and renal transporters involved in the disposition of cabotegravir-glucuronide, with their fractional contribution, have been provided.


Assuntos
Glucuronídeos/química , Inibidores de Integrase/química , Inibidores de Integrase/metabolismo , Piridonas/química , Piridonas/metabolismo , Animais , Transporte Biológico , Células HEK293 , Hepatócitos/metabolismo , Humanos , Fígado/citologia , Fígado/metabolismo , Microssomos/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla , Ratos
10.
J Am Chem Soc ; 141(6): 2703-2712, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30657686

RESUMO

Modification of proteins with polyubiquitin chains is a key regulatory mechanism to control cellular behavior and alterations in the ubiquitin system are linked to many diseases. Linear (M1-linked) polyubiquitin chains play pivotal roles in several cellular signaling pathways mediating immune and inflammatory responses and apoptotic cell death. These chains are formed by the linear ubiquitin chain assembly complex (LUBAC), a multiprotein E3 ligase that consists of 3 subunits, HOIP, HOIL-1L, and SHARPIN. Herein, we describe the discovery of inhibitors targeting the active site cysteine of the catalytic subunit HOIP using fragment-based covalent ligand screening. We report the synthesis of a diverse library of electrophilic fragments and demonstrate an integrated use of protein LC-MS, biochemical ubiquitination assays, chemical synthesis, and protein crystallography to enable the first structure-based development of covalent inhibitors for an RBR E3 ligase. Furthermore, using cell-based assays and chemoproteomics, we demonstrate that these compounds effectively penetrate mammalian cells to label and inhibit HOIP and NF-κB activation, making them suitable hits for the development of selective probes to study LUBAC biology. Our results illustrate the power of fragment-based covalent ligand screening to discover lead compounds for challenging targets, which holds promise to be a general approach for the development of cell-permeable inhibitors of thioester-forming E3 ubiquitin ligases.


Assuntos
Inibidores Enzimáticos/farmacologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/metabolismo , Células HEK293 , Humanos , Ligantes , Células MCF-7 , Modelos Moleculares , Estrutura Secundária de Proteína , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Ubiquitina-Proteína Ligases/química
11.
Nature ; 564(7736): 439-443, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30405246

RESUMO

Stimulator of interferon genes (STING) is a receptor in the endoplasmic reticulum that propagates innate immune sensing of cytosolic pathogen-derived and self DNA1. The development of compounds that modulate STING has recently been the focus of intense research for the treatment of cancer and infectious diseases and as vaccine adjuvants2. To our knowledge, current efforts are focused on the development of modified cyclic dinucleotides that mimic the endogenous STING ligand cGAMP; these have progressed into clinical trials in patients with solid accessible tumours amenable to intratumoral delivery3. Here we report the discovery of a small molecule STING agonist that is not a cyclic dinucleotide and is systemically efficacious for treating tumours in mice. We developed a linking strategy to synergize the effect of two symmetry-related amidobenzimidazole (ABZI)-based compounds to create linked ABZIs (diABZIs) with enhanced binding to STING and cellular function. Intravenous administration of a diABZI STING agonist to immunocompetent mice with established syngeneic colon tumours elicited strong anti-tumour activity, with complete and lasting regression of tumours. Our findings represent a milestone in the rapidly growing field of immune-modifying cancer therapies.


Assuntos
Benzimidazóis/química , Benzimidazóis/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/imunologia , Desenho de Fármacos , Proteínas de Membrana/agonistas , Animais , Benzimidazóis/administração & dosagem , Benzimidazóis/uso terapêutico , Humanos , Ligantes , Proteínas de Membrana/imunologia , Camundongos , Modelos Moleculares , Nucleotídeos Cíclicos/metabolismo
12.
Nucleic Acids Res ; 45(10): 5691-5706, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28334823

RESUMO

Histone chaperones prevent promiscuous histone interactions before chromatin assembly. They guarantee faithful deposition of canonical histones and functionally specialized histone variants into chromatin in a spatial- and temporally-restricted manner. Here, we identify the binding partners of the primate-specific and H3.3-related histone variant H3.Y using several quantitative mass spectrometry approaches, and biochemical and cell biological assays. We find the HIRA, but not the DAXX/ATRX, complex to recognize H3.Y, explaining its presence in transcriptionally active euchromatic regions. Accordingly, H3.Y nucleosomes are enriched in the transcription-promoting FACT complex and depleted of repressive post-translational histone modifications. H3.Y mutational gain-of-function screens reveal an unexpected combinatorial amino acid sequence requirement for histone H3.3 interaction with DAXX but not HIRA, and for H3.3 recruitment to PML nuclear bodies. We demonstrate the importance and necessity of specific H3.3 core and C-terminal amino acids in discriminating between distinct chaperone complexes. Further, chromatin immunoprecipitation sequencing experiments reveal that in contrast to euchromatic HIRA-dependent deposition sites, human DAXX/ATRX-dependent regions of histone H3 variant incorporation are enriched in heterochromatic H3K9me3 and simple repeat sequences. These data demonstrate that H3.Y's unique amino acids allow a functional distinction between HIRA and DAXX binding and its consequent deposition into open chromatin.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/genética , Chaperonas de Histonas/genética , Código das Histonas , Histonas/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Transformada , Cromatina/química , Cromatina/metabolismo , Proteínas Correpressoras , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células HeLa , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Repetições de Microssatélites , Chaperonas Moleculares , Proteínas Nucleares/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Cultura Primária de Células , Ligação Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
13.
Mol Cell Proteomics ; 16(5): 770-785, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28336715

RESUMO

The plasma membrane proteome plays a crucial role in inter- and intracellular signaling, cell survival, and cell identity. As such, it is a prominent target for pharmacological intervention. The relatively low abundance of this subproteome in conjunction with challenging extractability and solubility still hampers its comprehensive analysis. Here, we combined a chemical glycoprotein-tagging strategy with mass spectrometry to enable comprehensive analysis of the cell-surface glycoproteome. To benchmark this workflow and to provide guidance for cell line selection for functional experiments, we generated an inventory of the N-linked cell-surface glycoproteomes of 15 standard laboratory human cell lines and three primary lymphocytic cell types. On average, about 900 plasma membrane and secreted proteins were identified per experiment, including more than 300 transporters and ion channels. Primary cells displayed distinct expression of surface markers and transporters underpinning the importance of carefully validating model cell lines selected for the study of cell surface-mediated processes. To monitor dynamic changes of the cell-surface proteome in a highly multiplexed experiment, we employed an isobaric mass tag-based chemical labeling strategy. This enabled the time-resolved analysis of plasma membrane protein presentation during differentiation of the monocytic suspension cell line THP-1 into macrophage-like adherent cells. Time-dependent changes observed in membrane protein presentation reflect functional remodeling during the phenotypic transition in three distinct phases: rapid surface presentation and secretion of proteins from intracellular pools concurrent with rapid internalization of no longer needed proteins and finally delayed presentation of newly synthesized macrophage markers. Perturbation of this process using marketed receptor tyrosine kinase inhibitors revealed dasatinib to severely compromise macrophage differentiation due to an off-target activity. This finding suggests that dynamic processes can be highly vulnerable to drug treatment and should be monitored more rigorously to identify adverse drug effects.


Assuntos
Diferenciação Celular , Membrana Celular/metabolismo , Glicoproteínas/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Biotinilação , Linhagem Celular , Dasatinibe/farmacologia , Humanos , Monócitos/citologia , Inibidores de Proteínas Quinases/farmacologia , Reprodutibilidade dos Testes
14.
Cell ; 152(5): 1146-59, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23434322

RESUMO

Tet proteins oxidize 5-methylcytosine (mC) to generate 5-hydroxymethyl (hmC), 5-formyl (fC), and 5-carboxylcytosine (caC). The exact function of these oxidative cytosine bases remains elusive. We applied quantitative mass-spectrometry-based proteomics to identify readers for mC and hmC in mouse embryonic stem cells (mESC), neuronal progenitor cells (NPC), and adult mouse brain tissue. Readers for these modifications are only partially overlapping, and some readers, such as Rfx proteins, display strong specificity. Interactions are dynamic during differentiation, as for example evidenced by the mESC-specific binding of Klf4 to mC and the NPC-specific binding of Uhrf2 to hmC, suggesting specific biological roles for mC and hmC. Oxidized derivatives of mC recruit distinct transcription regulators as well as a large number of DNA repair proteins in mouse ES cells, implicating the DNA damage response as a major player in active DNA demethylation.


Assuntos
5-Metilcitosina/análise , Citosina/análogos & derivados , Metilação de DNA , 5-Metilcitosina/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Citosina/análise , Citosina/metabolismo , DNA Glicosilases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Fator 4 Semelhante a Kruppel , Espectrometria de Massas , Camundongos , Oxirredução , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição de Fator Regulador X , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
15.
Nucleic Acids Res ; 40(13): 5951-64, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22467210

RESUMO

The histone variant H2A.Z has been implicated in many biological processes, such as gene regulation and genome stability. Here, we present the identification of H2A.Z.2.2 (Z.2.2), a novel alternatively spliced variant of histone H2A.Z and provide a comprehensive characterization of its expression and chromatin incorporation properties. Z.2.2 mRNA is found in all human cell lines and tissues with highest levels in brain. We show the proper splicing and in vivo existence of this variant protein in humans. Furthermore, we demonstrate the binding of Z.2.2 to H2A.Z-specific TIP60 and SRCAP chaperone complexes and its active replication-independent deposition into chromatin. Strikingly, various independent in vivo and in vitro analyses, such as biochemical fractionation, comparative FRAP studies of GFP-tagged H2A variants, size exclusion chromatography and single molecule FRET, in combination with in silico molecular dynamics simulations, consistently demonstrate that Z.2.2 causes major structural changes and significantly destabilizes nucleosomes. Analyses of deletion mutants and chimeric proteins pinpoint this property to its unique C-terminus. Our findings enrich the list of known human variants by an unusual protein belonging to the H2A.Z family that leads to the least stable nucleosome known to date.


Assuntos
Processamento Alternativo , Histonas/genética , Histonas/fisiologia , Nucleossomos/metabolismo , Adenosina Trifosfatases/metabolismo , Linhagem Celular , Cromatina/metabolismo , DNA/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Lisina Acetiltransferase 5 , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína
16.
EMBO Rep ; 10(10): 1147-53, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19696785

RESUMO

Heat shock protein 90 (Hsp90) is an abundant, dimeric ATP-dependent molecular chaperone, and ATPase activity is essential for its in vivo functions. S-nitrosylation of a residue located in the carboxy-terminal domain has been shown to affect Hsp90 activity in vivo. To understand how variation of a specific amino acid far away from the amino-terminal ATP-binding site regulates Hsp90 functions, we mutated the corresponding residue and analysed yeast and human Hsp90 variants both in vivo and in vitro. Here, we show that this residue is a conserved, strong regulator of Hsp90 functions, including ATP hydrolysis and chaperone activity. Unexpectedly, the variants alter both the C-terminal and N-terminal association properties of Hsp90, and shift its conformational equilibrium within the ATPase cycle. Thus, S-nitrosylation of this residue allows the fast and efficient fine regulation of Hsp90.


Assuntos
Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Choque Térmico HSP90/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
17.
Mol Cell Proteomics ; 7(9): 1763-77, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18515860

RESUMO

Because of their antagonistic catalytic functions, protein-tyrosine phosphatases (PTPs) and protein-tyrosine kinases act together to control phosphotyrosine-mediated signaling processes in mammalian cells. However, unlike for protein-tyrosine kinases, little is known about the cellular substrate specificity of many PTPs because of the lack of appropriate methods for the systematic and detailed analysis of cellular PTP function. Even for the most intensely studied, prototypic family member PTP1B many of its physiological functions cannot be explained by its known substrates. To gain better insights into cellular PTP1B function, we used quantitative MS to monitor alterations in the global tyrosine phosphorylation of PTP1B-deficient mouse embryonic fibroblasts in comparison with their wild-type counterparts. In total, we quantified 124 proteins containing 301 phosphotyrosine sites under basal, epidermal growth factor-, or platelet-derived growth factor-stimulated conditions. A subset of 18 proteins was found to harbor hyperphosphorylated phosphotyrosine sites in knock-out cells and was functionally linked to PTP1B. Among these proteins, regulators of cell motility and adhesion are overrepresented, such as cortactin, lipoma-preferred partner, ZO-1, or p120ctn. In addition, regulators of proliferation like p62DOK or p120RasGAP also showed increased cellular tyrosine phosphorylation. Physical interactions of these proteins with PTP1B were further demonstrated by using phosphatase-inactive substrate-trapping mutants in a parallel MS-based analysis. Our results correlate well with the described phenotype of PTP1B-deficient fibroblasts that is characterized by an increase in motility and reduced cell proliferation. The presented study provides a broad overview about phosphotyrosine signaling processes in mouse fibroblasts and, supported by the identification of various new potential substrate proteins, indicates a central role of PTP1B within cellular signaling networks. Importantly the MS-based strategies described here are entirely generic and can be used to address the poorly understood aspects of cellular PTP function.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteômica/métodos , Domínios de Homologia de src , Animais , Sítios de Ligação , Embrião de Mamíferos/citologia , Embrião de Mamíferos/enzimologia , Fator de Crescimento Epidérmico/metabolismo , Fibroblastos/enzimologia , Espectrometria de Massas/métodos , Camundongos , Camundongos Knockout , Fosforilação , Fosfotirosina/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Transdução de Sinais , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA