Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(6): 540, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733434

RESUMO

X-ray fluorescence is a fast, cost-effective, and eco-friendly method for elemental analyses. Portable X-ray fluorescence spectrometers (pXRF) have proven instrumental in detecting metals across diverse matrices, including plants. However, sample preparation and measurement procedures need to be standardized for each instrument. This study examined sample preparation methods and predictive capabilities for nickel (Ni) concentrations in various plants using pXRF, employing empirical calibration based on inductively coupled plasma optical emission spectroscopy (ICP-OES) Ni data. The evaluation involved 300 plant samples of 14 species with variable of Ni accumulation. Various dwell times (30, 60, 90, 120, 300 s) and sample masses (0.5, 1.0, 1.5, 2.0 g) were tested. Calibration models were developed through empirical and correction factor approaches. The results showed that the use of 1.0 g of sample (0.14 g cm-2) and a dwell time of 60 s for the study conditions were appropriate for detection by pXRF. Ni concentrations determined by ICP-OES were highly correlated (R2 = 0.94) with those measured by the pXRF instrument. Therefore, pXRF can provide reliable detection of Ni in plant samples, avoiding the digestion of samples and reducing the decision-making time in environmental management.


Assuntos
Monitoramento Ambiental , Níquel , Plantas , Espectrometria por Raios X , Níquel/análise , Monitoramento Ambiental/métodos , Monitoramento Ambiental/instrumentação , Espectrometria por Raios X/métodos , Plantas/química , Poluentes do Solo/análise
2.
Sci Total Environ ; 919: 170691, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325468

RESUMO

Nickel hyperaccumulator plants play a major role in nickel recycling in ultramafic ecosystems, and under agromining the nickel dynamics in the farming system will be affected by removal of nickel-rich biomass. We investigated the biogeochemical cycling of nickel as well as key nutrients in an agromining operation that uses the metal crop Phyllanthus rufuschaneyi in the first tropical metal farm located in Borneo (Sabah, Malaysia). For two years, this study monitored nine 25-m2 plots and collected information on weather, biomass exportation, water, and litter fluxes to the soil. Without harvesting, nickel inputs and outputs had only minor contributions (<1 %) to the total nickel budget in this system. The nickel cycle was mainly driven by internal fluxes, particularly plant uptake, litterfall and throughfall. After two years of cropping, the nickel litter flux corresponded to 50 % of the total nickel stock in the aerial biomass (3.1 g m-2 year-1). Nickel was slowly released from the litter; after 15 months of degradation, 60 % of the initial biomass and the initial nickel quantities were still present in the organic layer. Calcium, phosphorus and potassium budgets in the system were negative without fertilisation. Unlike what is observed for nickel, sustained agromining would thus lead to a strong depletion of calcium stocks if mineral weathering cannot replenish it.


Assuntos
Ecossistema , Níquel , Níquel/análise , Malásia , Fazendas , Cálcio/metabolismo , Agricultura , Solo , Plantas/metabolismo
3.
Plant J ; 107(4): 1040-1055, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34053139

RESUMO

The hyperaccumulator Pycnandra acuminata is a New Caledonian rainforest tree known to have the highest concentration of nickel in any living organism, with 25 wt% nickel in its latex. All trees (with a diameter of >10 cm) and soil profiles in a 0.25-hectare permanent plot were sampled to assess the biogeochemical compartmentalisation of nickel in a dense stand of P. acuminata trees. Nickel stable isotope analysis permitted insights into the cycling of nickel in this ecosystem. The total tree biomass of the plot was calculated to be 281 tonnes ha-1 , which contained 0.44 kg of cobalt, 49.1 kg of manganese, 257 kg of nickel and 6.76 kg of zinc. Nickel stable isotope analysis identified the biotic origin of the nickel in the soil upper layers, with P. acuminata shoots enriched in lighter nickel isotopes. The δ60 Ni latex signature suggests that long-distance transport, radial xylem and phloem loading are at play in P. acuminata.


Assuntos
Florestas , Níquel/análise , Níquel/farmacocinética , Sapotaceae/metabolismo , Solo/química , Biomassa , Isótopos/análise , Látex/química , Metais Pesados/análise , Nova Caledônia , Folhas de Planta/química , Sapotaceae/efeitos dos fármacos , Oligoelementos/análise , Oligoelementos/farmacocinética , Árvores , Clima Tropical , Xilema/química
4.
Int J Phytoremediation ; 23(11): 1157-1168, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33586537

RESUMO

The aim of this study was to assess the potential of the woody nickel hyperaccumulator species Blepharidium guatemalense (Standl.) Standl. for agromining in southeastern Mexico. Pot trials consisting of nickel dosing (0, 20, 50, 100, and 250 mg Ni kg-1), and synthetic and organic fertilization were conducted. Field trials were also undertaken with different harvesting regimes of B. guatemalense. Foliar nickel concentrations increased significantly with rising nickel additions, with a 300-fold increase at 250 mg Ni kg-1 treatment relative to the control. Synthetic fertilization strongly increased nickel uptake without any change in plant growth or biomass, whereas organic fertilization enhanced plant shoot biomass with a negligible effect on foliar nickel concentrations. A 5-year-old stand which was subsequently harvested twice per year produced the maximum nickel yield tree-1 yr-1, with an estimated total nickel yield of 142 kg ha-1 yr-1. Blepharidium guatemalense is a prime candidate for nickel agromining on account of its high foliar Ni concentrations, high bioconcentration (180) and translocation factors (3.3), fast growth rate and high shoot biomass production. Future studies are needed to test the outcomes of the pot trials in the field. Extensive geochemical studies are needed to identify potential viable agromining locations. Novelty Statement Our research team is a pioneer in the discovery of metal hyperaccumulator plants in Mesoamerica with at least 13 species discovered in the last 2 years. This study is the first to assess the potential of nickel agromining (phytomining) in Mexico (and in all the American continent), using one of the strongest nickel hyperaccumulators reported so far. The promising results of this study are the basis for optimal agricultural management of Blepharidium guatemalense.


Assuntos
Níquel , Poluentes do Solo , Biodegradação Ambiental , América Central , México , Níquel/análise , Solo , Poluentes do Solo/análise
5.
Plants (Basel) ; 9(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271845

RESUMO

Albanian taxa and populations of the genus Odontarrhena are most promising candidates for research on metal tolerance and Ni-agromining, but their genetic structure remains unknown. We investigated phylogenetic relationships and genetic differentiation in relation to distribution and ploidy of the taxa, anthropic site disturbance, elevation, soil type, and trace metals at each population site. After performing DNA sequencing of selected accessions, we applied DNA-fingerprinting to analyze the genetic structure of 32 populations from ultramafic and non-ultramafic outcrops across Albania. Low sequence divergence resulted in poorly resolved phylograms, but supported affinity between the two diploid serpentine endemics O. moravensis and O. rigida. Analysis of molecular variance (AMOVA) revealed significant population differentiation, but no isolation by distance. Among-population variation was higher in polyploids than in diploids, in which genetic distances were lower. Genetic admixing at population and individual level occurred especially in the polyploids O. chalcidica, O. decipiens, and O. smolikana. Admixing increased with site disturbance. Outlier loci were higher in serpentine populations but decreased along altitude with lower drought and heat stress. Genetic variability gained by gene flow and hybridization at contact zones with "resident" species of primary ultramafic habitats promoted expansion of the tetraploid O. chalcidica across anthropogenic sites.

6.
Ann Bot ; 126(5): 905-914, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32577727

RESUMO

BACKGROUND AND AIMS: Hybanthus austrocaledonicus (Violaceae) is a nickel (Ni) hyperaccumulator endemic to New Caledonia. One of the specimens stored at the local herbarium had a strip of bark with a remarkably green phloem tissue attached to the sheet containing over 4 wt% Ni. This study aimed to collect field samples from the original H. austrocaledonicus locality to confirm the nature of the green 'nickel-rich phloem' in this taxon and to systematically assess the occurrence of Ni hyperaccumulation in H. austrocaledonicus and Hybanthus caledonicus populations. METHODS: X-ray fluorescence spectroscopy scanning of all collections of the genus Hybanthus (236 specimens) was undertaken at the Herbarium of New Caledonia to reveal incidences of Ni accumulation in populations of H. austrocaledonicus and H. caledonicus. In parallel, micro-analytical investigations were performed via synchrotron X-ray fluorescence microscopy (XFM) and scanning electron microscopy with X-ray microanalysis (SEM-EDS). KEY RESULTS: The extensive scanning demonstrated that Ni hyperaccumulation is not a characteristic common to all populations in the endemic Hybanthus species. Synchrotron XFM revealed that Ni was exclusively concentrated in the epidermal cells of the leaf blade and petiole, conforming with the majority of (tropical) Ni hyperaccumulator plants studied to date. SEM-EDS of freeze-dried and frozen-hydrated samples revealed the presence of dense solid deposits in the phloem bundles that contained >8 wt% nickel. CONCLUSIONS: The occurrence of extremely Ni-rich green phloem tissues appears to be a characteristic feature of tropical Ni hyperaccumulator plants.


Assuntos
Níquel , Violaceae , Nova Caledônia , Níquel/análise , Floema , Folhas de Planta/química
7.
Ann Bot ; 126(6): 1017-1027, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32597938

RESUMO

BACKGROUND AND AIMS: The aim of this study was to test the frequency distributions of foliar elements from a large dataset from Kinabalu Park (Sabah, Malaysia) for departure from unimodality, indicative of a distinct ecophysiological response associated with hyperaccumulation. METHODS: We collected foliar samples (n = 1533) comprising 90 families, 198 genera and 495 plant species from ultramafic soils, further foliar samples (n = 177) comprising 45 families, 80 genera and 120 species from non-ultramafic soils and corresponding soil samples (n = 393 from ultramafic soils and n = 66 from non-ultramafic soils) from Kinabalu Park (Sabah, Malaysia). The data were geographically (Kinabalu Park) and edaphically (ultramafic soils) constrained. The inclusion of a relatively high proportion (approx. 14 %) of samples from hyperaccumulator species [with foliar concentrations of aluminium and nickel (Ni) >1000 µg g-1, cobalt, copper, chromium and zinc >300 µg g-1 or manganese (Mn) >10 mg g-1] allowed for hypothesis testing. KEY RESULTS: Frequency distribution graphs for most elements [calcium (Ca), magnesium (Mg) and phosphorus (P)] were unimodal, although some were skewed left (Mg and Mn). The Ni frequency distribution was bimodal and the separation point for the two modes was between 250 and 850 µg g-1. CONCLUSIONS: Accounting for statistical probability, the established empirical threshold value (>1000 µg g-1) remains appropriate. The two discrete modes for Ni indicate ecophysiologically distinct behaviour in plants growing in similar soils. This response is in contrast to Mn, which forms the tail of a continuous (approximately log-normal) distribution, suggestive of an extension of normal physiological processes.


Assuntos
Níquel , Poluentes do Solo , Cobre , Malásia , Solo
8.
Metallomics ; 12(8): 1278-1289, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32558867

RESUMO

Hyperaccumulator plants have the ability to efficiently concentrate metallic elements, e.g. nickel, from low-grade sources into their living biomass. Although the majority of nickel hyperaccumulator plant species restrict cobalt uptake, some species are able to co-accumulate cobalt when growing in ultramafic soils. The asteraceous perennial herb Berkheya coddii from South Africa is one of the most promising agromining crops known globally. It may accumulate nickel in excess of 30 000 µg g-1 in dry leaves, while co-accumulating up to 600 µg g-1 cobalt. This study aimed to elucidate the interactions between nickel and cobalt for uptake by and translocation into B. coddii through a pot experiment including various cobalt/nickel treatment combinations in soil, after which uptake and localisation were recorded. Cobalt in the substrate limits nickel uptake by B. coddii plants and is mainly retained in the basal leaves in contrast to Ni that is rapidly transferred to the top of the plant. B. coddii was more tolerant to high Ni concentration, whether in the substrate or internally but remains a promising crop which could be used, with suitable agronomic measures and practices, for cobalt agromining in areas with high soil cobalt but low soil nickel. A yield of 77 kg ha-1 nickel and 16.5 kg ha-1 cobalt may be attainable under optimum conditions.


Assuntos
Asteraceae/metabolismo , Cobalto/metabolismo , Níquel/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , África do Sul
9.
Environ Microbiol ; 22(4): 1649-1665, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32128926

RESUMO

The Island of Borneo is a major biodiversity hotspot, and in the Malaysian state of Sabah, ultramafic soils are extensive and home to more than 31 endemic nickel hyperaccumulator plants. The aim of this study was to characterize the structure and the diversity of the rhizosphere bacterial communities of several of these nickel hyperaccumulator plants and factors that affect these bacterial communities in Sabah. The most abundant phyla were Proteobacteria, Acidobacteria and Actinobacteria. At family level, Burkholderiaceae and Xanthobacteraceae (Proteobacteria phylum) were the most abundant families in the hyperaccumulator rhizospheres. Redundancy analysis based on soil chemical analyses and relative abundances of the major bacterial phyla showed that abiotic factors of the studied sites drove the bacterial diversity. For all R. aff. bengalensis rhizosphere soil samples, irrespective of studied site, the bacterial diversity was similar. Moreover, the Saprospiraceae family showed a high representativeness in the R. aff. bengalensis rhizosphere soils and was linked with the nickel availability in soils. The ability of R. aff. bengalensis to concentrate nickel in its rhizosphere appears to be the major factor driving the rhizobacterial community diversity unlike for other hyperaccumulator species.


Assuntos
Níquel/metabolismo , Rizosfera , Microbiologia do Solo , Bactérias/isolamento & purificação , Bornéu , Malásia , Níquel/análise , Plantas/metabolismo
10.
J Environ Manage ; 254: 109798, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31739090

RESUMO

Nickel (Ni) is used in numerous industrial processes, with large amounts of Ni-rich industrial wastes produced, which are largely sent to landfill. Nickel recovery from waste materials that would otherwise be disposed is of particular interest. Nickel phytomining represents a new technology in which hyperaccumulator plants are cultivated on Ni-rich substrates for commercial metal recovery. The aim of this study was to investigate the possibility of Ni transfer from industrial waste into plant biomass, to support recovery processes from bio-ores. Different industrial galvanic sludges (containing 85-150 g kg-1 Ni) were converted into artificial substrates (i.e. technosols) and the Ni hyperaccumulator Odontarrhena chalcidica (formerly Alyssum murale) was cultivated on these Ni-rich matrices. A greenhouse pot experiment was conducted for three months including an ultramafic soil control and testing fertilized (NPK) and unfertilized replicates. The results showed that fertilization was effective in improving plant biomass for all the substrates and that O. chalcidica was capable of viably growing on technosols, producing a comparable biomass to O. chalcidica on the control (ultramafic soil). On all technosols, O. chalcidica achieved Ni shoot concentrations of more than >1000 mg Ni kg -1 and maximum Ni uptake was obtained from one of the technosols (26.8 g kg -1 Ni, unfertilized; 20.2 g kg -1 Ni, fertilized). Nickel accumulation from three of the technosols resulted to be comparable with the control ultramafic soil. This study demonstrated the feasibility of transferring Ni from toxic waste into the biomass of Odontarrhena chalcidica and that phytomining from galvanic sludge-derived technosols can provide similar Ni yields as from natural ultramafic soils.


Assuntos
Brassicaceae , Poluentes do Solo , Biodegradação Ambiental , Resíduos Industriais , Níquel , Esgotos , Solo
11.
Metallomics ; 11(12): 2052-2065, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31651002

RESUMO

Hyperaccumulator plants present the ideal model system for studying the physiological regulation of the essential (and potentially toxic) transition elements nickel and zinc. This study used synchrotron X-ray Fluorescence Microscopy (XFM) elemental imaging and spatially resolved X-ray Absorption Spectroscopy (XAS) to elucidate elemental localization and chemical speciation of nickel and zinc in the hyperaccumulators Noccaea tymphaea and Bornmuellera emarginata (synonym Leptoplax emarginata). The results show that in the leaves of N. tymphaea nickel and zinc have contrasting localization, and whereas nickel is present in vacuoles of epidermal cells, zinc occurs mainly in the mesophyll cells. In the seeds Ni and Zn are similarly localized and strongly enriched in the cotyledons in N. tymphaea. Nickel is strongly enriched in the tip of the radicle of B. emarginata. Noccaea tymphaea has an Fe-rich provascular strand network in the cotyledons of the seed. The chemical speciation of Ni in the seeds of N. tymphaea is unequivocally associated with carboxylic acids, whereas Zn is present as the phytate complex. The spatially resolved spectroscopy did not reveal any spatial variation in chemical speciation of Ni and Zn within the N. tymphaea seed. The dissimilar ecophysiological behaviour of Ni and Zn in N. tymphaea and B. emarginata raises questions about the evolution of hyperaccumulation in these species.


Assuntos
Brassicaceae/química , Células do Mesofilo/química , Níquel/análise , Folhas de Planta/química , Vacúolos/química , Zinco/análise , Brassicaceae/classificação , Sementes/química , Especificidade da Espécie , Espectroscopia por Absorção de Raios X
12.
Am J Bot ; 106(10): 1377-1385, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31553490

RESUMO

PREMISE: Hyperaccumulation of heavy metals in plants has never been documented from Central America or Mexico. Psychotria grandis, P. costivenia, and P. glomerata (Rubiaceae) have been reported to hyperaccumulate nickel in the Greater Antilles, but they also occur widely across the neotropics. The goals of this research were to investigate the geographic distribution of hyperaccumulation in these species and explore the phylogenetic distribution of hyperaccumulation in this clade by testing related species. METHODS: Portable x-ray fluorescence (XRF) spectroscopy was used to analyze 565 specimens representing eight species of Psychotria from the Missouri Botanical Garden herbarium. RESULTS: Nickel hyperaccumulation was found in specimens of Psychotria costivenia ranging from Mexico to Costa Rica and in specimens of P. grandis from Guatemala to Ecuador and Venezuela. Among related species, nickel hyperaccumulation is reported for the first time in P. lorenciana and P. papantlensis, but no evidence of hyperaccumulation was found in P. clivorum, P. flava, or P. pleuropoda. Previous reports of hyperaccumulation in P. glomerata appear to be erroneous, resulting from taxonomic synonymy and specimen misidentification. CONCLUSIONS: Hyperaccumulation of nickel by Psychotria is now known to occur widely from southern Mexico through Central America to northwestern South America, including some areas not known to have ultramafic soils. Novel aspects of this research include the successful prediction of new hyperaccumulator species based on molecular phylogeny, use of XRF technology to nondestructively obtain elemental data from herbarium specimens, and documentation of previously unknown areas of ultramafic or nickel-rich soil based on such data.


Assuntos
Psychotria , América Central , Costa Rica , México , Níquel , Filogenia , América do Sul
13.
Int J Phytoremediation ; 21(1): 43-51, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30648409

RESUMO

In Albania, ultramafic outcrops cover 11% of the surface and have the potential to support nickel phytomining. In a large-scale in-situ experiment on an ultramafic Vertisols in Pojskë we are studying the influence of agronomical practices on Ni phytoextraction yield of Odontarrhena chalcidica (syn. Alyssum murale). Three cropping systems were compared in three plots in 2016-2017; POJ-1 Plot (0.3 ha) was established with plants that had germinated spontaneously without any treatments; POJ-2 plot (0.3 ha) was covered by plants that had germinated spontaneously and was treated with mineral fertilizer (N50P50K50 kg ha-1); and POJ-3 Plot (400 m2) was divided in four sub plots, where O. chalcidica was planted at a density of 4 plants m-2 on which, we neither applied fertilizer, nor NPK fertilizer (N65P65K65), pig (FPM; N260:P105:K260 + 15 kg ha-1N, P, K) or chicken manure (FCHM; N260:P390:K260 +15 kg ha-1 N, P, K. Irrigation and mechanical control of weeds was done on POJ-3. After 8 months, shoot Ni concentration, biomass, and Ni yields were higher in O. chalcidica treated with manure and the cost of biomass production was smaller. Nickel yield was more promising (145 kg ha-1) than in previous field trials. This study highlights that, using manure, the Ni yield increases Ni phytomining net values, thus agromining can become an economically justifiable agricultural cropping system.


Assuntos
Fertilizantes , Níquel/análise , Agricultura , Albânia , Animais , Biodegradação Ambiental , Esterco , Solo , Suínos
14.
Sci Total Environ ; 654: 237-249, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30445325

RESUMO

Ultramafic (i.e. serpentine) soils are widespread in the Balkans and particularly in Albania. They account for a large part of plant endemism in that region and host several hyperaccumulator species, which are characterized by leaf nickel concentrations frequently above 1%. This rich nickel hyperaccumulating flora could serve as candidate to be used in phytoextraction and agromining. Despite recent interest in metal hyperaccumulating plants and agromining, very few studies have investigated the bacterial diversity and the influence of environmental factors on microbial gene profiles in the rhizosphere of hyperaccumulator plants growing on ultramafic soils. Because rhizospheric bacteria could be crucial to the success of phytoremediation, we studied a total of 48 nickel-hyperaccumulating plants which were sampled from four species that are widespread in Albania: Noccaea ochroleuca, Odontarrhena smolikana, O. rigida and O. chalcidica. All samples were taken from the ultramafic regions of Librazhd and Pogradec in eastern Albania in October 2015. Our study shows that Proteobacteria, Actinobacteria and Acidobacteria dominated the soil bacterial communities. Of these three phyla, only Proteobacteria was relatively abundant. This study underlines the influence of soil Cation Exchange Capacity on the bacterial community's diversity and structure. Based on the predicted metagenomes, the genes belonging to amino acid, lipid and carbohydrate metabolisms were identified as major gene families. Our study sheds some light on our understanding of how bacterial communities are structured within and affect the rhizosphere of hyperaccumulator plants from ultramafic soils in Albania.


Assuntos
Brassicaceae/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Níquel/análise , Proteobactérias/isolamento & purificação , Rizosfera , Poluentes do Solo/análise , Albânia , Biodegradação Ambiental , Biodiversidade , Brassicaceae/metabolismo , Níquel/metabolismo , Proteobactérias/classificação , Proteobactérias/genética , Solo/química , Microbiologia do Solo , Poluentes do Solo/metabolismo
15.
Sci Rep ; 8(1): 9659, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29942028

RESUMO

Hyperaccumulator plants have the unique ability to concentrate specific elements in their shoot in concentrations that can be thousands of times greater than in normal plants. Whereas all known zinc hyperaccumulator plants are facultative hyperaccumulators with only populations on metalliferous soils hyperaccumulating zinc (except for Arabidopsis halleri and Noccaea species that hyperaccumulate zinc irrespective of the substrate), the present study discovered that Dichapetalum gelonioides is the only (zinc) hyperaccumulator known to occur exclusively on 'normal' soils, while hyperaccumulating zinc. We recorded remarkable foliar zinc concentrations (10 730 µg g-1, dry weight) in Dichapetalum gelonioides subsp. sumatranum growing on 'normal' soils with total soil zinc concentrations of only 20 µg g-1. The discovery of zinc hyperaccumulation in this tropical woody plant, especially the extreme zinc concentrations in phloem and phloem-fed tissues (reaching up to 8465 µg g-1), has possible implications for advancing zinc biofortification in Southeast Asia. Furthermore, we report exceptionally high foliar nickel concentrations in D. subsp. tuberculatum (30 260 µg g-1) and >10 wt% nickel in the ash, which can be exploited for agromining. The unusual nickel and zinc accumulation behaviour suggest that Dichapetalum-species may be an attractive model to study hyperaccumulation and hypertolerance of these elements in tropical hyperaccumulator plants.


Assuntos
Malpighiales/metabolismo , Níquel/metabolismo , Zinco/metabolismo , Sudeste Asiático , Caules de Planta/metabolismo , Rizosfera , Solo/química
16.
Bot Stud ; 59(1): 9, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29589161

RESUMO

BACKGROUND: Nickel hyperaccumulator plants are of much interest for their evolution and unique ecophysiology, and also for potential applications in agromining-a novel technology that uses plants to extract valuable metals from soil. The majority of nickel hyperaccumulators are known from ultramafic soils in tropical regions (Cuba, New Caledonia and Southeast Asia), and one genus, Phyllanthus (Phyllanthaceae), is globally the most represented taxonomic entity. A number of tropical Phyllanthus-species have the potential to be used as 'metal crops' in agromining operations mainly because of their ease in cultivation and their ability to attain high nickel concentrations and biomass yields. RESULTS: One of the most promising species globally for agromining, is the here newly described species Phyllanthus rufuschaneyi. This species can be classified in subgenus Gomphidium on account of its staminate nectar disc and pistillate entire style and represents the most western species of this diverse group. The flower structure indicates that this species is probably pollinated by Epicephala moths. CONCLUSIONS: Phyllanthus rufuschaneyi is an extremely rare taxon in the wild, restricted to Lompoyou Hill near Kinabalu Park in Sabah, Malaysia. Its utilization in agromining will be a mechanism for conservation of the taxon, and highlights the importance of habitat and germplasm preservation if rare species are to be used in novel green technologies.

17.
Sci Total Environ ; 630: 275-286, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29477825

RESUMO

Nickel (Ni) agromining of ultramafic soils has been proposed as an eco-friendly option for metal recovery, which can also improve the fertility and quality of these low productive soils. The selection of adequate plant species and the analysis of their performance under the different climatic conditions are of interest for optimising the process and evaluating its full viability. A one-year field experiment was carried out to evaluate the viability of the two Ni-hyperaccumulating Mediterranean species, Alyssum murale and Leptoplax emarginata, for agromining purposes in ultramafic soils under a humid-temperate climate. Field plots of 50 m2 were established and the soil was fertilised with gypsum and inorganic NPK fertilisers prior to cropping. Alyssum murale produced a slightly higher Ni yield than L. emarginata, but Ni bioaccumulation was dependent on the plant phenological stage for both species, being maximal at mid-flowering (4.2 and 3.0 kg Ni ha-1, respectively). In both species, Ni was mainly stored in the leaves, especially in leaves of vegetative stems, but also in flowers and fruits in the case of L. emarginata. The main contributors to Ni yield of A. murale were flowering stems and their leaves, while for L. emarginata they were flowering stems and fruits. Implementing the agromining system increased soil nutrient availability, and modified microbial community structure and metabolic activity (due to fertilisation and plant root activity). The soil bacterial communities were dominated by Proteobacteria, Actinobacteria, Acidobacteria and Chloroflexi, and the agromining crops modified the relative abundance of some phyla (increasing Proteobacteria, Bacteroidetes and Nitrospirae and reducing Acidobacteria and Planctomycetes). Cultivating A. murale increased the densities of total culturable bacteria, while L. emarginata selected Ni-tolerant bacteria in its rhizosphere. In summary, both species showed great potential for their use in Ni agromining systems, although optimising soil and crop management practices could improve the phytoextraction efficiency.

18.
Environ Sci Technol ; 48(20): 11926-33, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25222693

RESUMO

Until now, there has been little data on the isotope fractionation of nickel (Ni) in higher plants and how this can be affected by plant Ni and zinc (Zn) homeostasis. A hydroponic cultivation was conducted to investigate the isotope fractionation of Ni and Zn during plant uptake and translocation processes. The nonaccumulator Thlaspi arvense, the Ni hyperaccumulator Alyssum murale and the Ni and Zn hyperaccumulator Noccaea caerulescens were grown in low (2 µM) and high (50 µM) Ni and Zn solutions. Results showed that plants were inclined to absorb light Ni isotopes, presumably due to the functioning of low-affinity transport systems across root cell membrane. The Ni isotope fractionation between plant and solution was greater in the hyperaccumulators grown in low Zn treatments (Δ(60)Ni(plant-solution) = -0.90 to -0.63‰) than that in the nonaccumulator T. arvense (Δ(60)Ni(plant-solution) = -0.21‰), thus indicating a greater permeability of the low-affinity transport system in hyperaccumulators. Light isotope enrichment of Zn was observed in most of the plants (Δ(66)Zn(plant-solution) = -0.23 to -0.10‰), but to a lesser extent than for Ni. The rapid uptake of Zn on the root surfaces caused concentration gradients, which induced ion diffusion in the rhizosphere and could result in light Zn isotope enrichment in the hyperaccumulator N. caerulescens. In high Zn treatment, Zn could compete with Ni during the uptake process, which reduced Ni concentration in plants and decreased the extent of Ni isotope fractionation (Δ(60)Ni(plant-solution) = -0.11 to -0.07‰), indicating that plants might take up Ni through a low-affinity transport system of Zn. We propose that isotope composition analysis for transition elements could become an empirical tool to study plant physiological processes.


Assuntos
Brassicaceae/metabolismo , Níquel/farmacocinética , Thlaspi/metabolismo , Isótopos de Zinco/farmacocinética , Transporte Biológico , Brassicaceae/efeitos dos fármacos , Isótopos/farmacocinética , Níquel/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Thlaspi/efeitos dos fármacos , Zinco/metabolismo , Zinco/farmacocinética , Isótopos de Zinco/metabolismo
19.
Environ Monit Assess ; 186(7): 4431-42, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24718927

RESUMO

This study aimed at relating the variability of Ni biogeochemistry along the ultramafic toposequence to pedogenesis and soil mineralogy. Hypereutric Cambisols dominate upslope; Cambic Vertisols and Fluvic Cambisols occur downslope. The soil mineralogy showed abundance of primary serpentine all over the sequence. It is predominant upslope but secondary smectites dominate in the Vertisols. Free Fe-oxides are abundant in all soils but slightly more abundant in the upslope soils. Whereas serpentines hold Ni in a similar and restricted range in every soil (approx. 0.3 %), Ni contents in smectites may vary a lot and Mg-rich and Al-poor smectites in the Vertisol could hold up to 4.9 % Ni. Ni was probably adsorbed onto amorphous Fe-oxides and was also exchangeable in secondary smectites. High availability of Ni in soils was confirmed by DTPA extractions. However, it varied significantly along the toposequence, being higher in upslope soils, where Ni-bearing amorphous Fe-oxides were abundant and total organic carbon higher and sensibly lower downslope on the Vertisols: NiDTPA varied from 285 mg kg(-1) in the surface of soil I (upslope) to 95.9 mg kg(-1) in the surface of Fluvic Cambisols. Concentration of Ni in Alyssum murale shoots varied from 0.7 % (Hypereutric Cambisols) to 1.4 % (Hypereutric Vertisol). Amazingly, Ni uptake by A. murale was not correlated to NiDTPA, suggesting the existence of specific edaphic conditions that affect the ecophysiology of A. murale upslope.


Assuntos
Níquel/análise , Poluentes do Solo/análise , Solo/química , Albânia , Brassicaceae/química , Monitoramento Ambiental , Modelos Químicos , Níquel/química , Poluentes do Solo/química
20.
Environ Sci Technol ; 47(6): 2612-20, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23373689

RESUMO

Ni phytoextraction processes need further understanding of the interactions between Ni availability in soils and its absorption by plant roots. The large metal uptake and root exudation by hyperaccumulator species could accelerate the weathering process of Ni-bearing phases in the rhizosphere. The aim of this work was to quantify the weathering of a Ni-bearing mineral phase in the rhizosphere of the Ni-hyperaccumulator Leptoplax emarginata. The studied mineral was chrysotile which was characterized by a low Ni solubility. Column experiments were performed to assess the effect of the Ni-hyperaccumulator L. emarginata and the contribution of rhizobacteria on the dissolution rate of chrysotile. Mineral weathering was monitored by measuring Ni and Mg transferred to leachates or plants throughout the experiment. Results showed that L. emarginata increased chrysotile dissolution by more than 2-fold . The hyperaccumulator L. emarginata accumulated 88% on average of total mobilized Ni. Inoculation with Ni-resistant bacteria in the rhizosphere of L. emarginata had no significant effect on chrysotile dissolution or plant accumulation of Ni in this context. Finally, after 15 weeks of culture, 1.65% of total Ni in the system was mobilized in the planted treatments compared with 0.03% in the unplanted treatments.


Assuntos
Asbestos Serpentinas/metabolismo , Brassicaceae/metabolismo , Níquel/metabolismo , Rizosfera , Asbestos Serpentinas/análise , Brassicaceae/microbiologia , Níquel/análise , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Solo/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA