Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genetics ; 217(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33724408

RESUMO

Artificial insemination in pig (Sus scrofa domesticus) breeding involves the evaluation of the semen quality of breeding boars. Ejaculates that fulfill predefined quality requirements are processed, diluted and used for inseminations. Within short time, eight Swiss Large White boars producing immotile sperm that had multiple morphological abnormalities of the sperm flagella were noticed at a semen collection center. The eight boars were inbred on a common ancestor suggesting that the novel sperm flagella defect is a recessive trait. Transmission electron microscopy cross-sections revealed that the immotile sperm had disorganized flagellar axonemes. Haplotype-based association testing involving microarray-derived genotypes at 41,094 SNPs of six affected and 100 fertile boars yielded strong association (P = 4.22 × 10-15) at chromosome 12. Autozygosity mapping enabled us to pinpoint the causal mutation on a 1.11 Mb haplotype located between 3,473,632 and 4,587,759 bp. The haplotype carries an intronic 13-bp deletion (Chr12:3,556,401-3,556,414 bp) that is compatible with recessive inheritance. The 13-bp deletion excises the polypyrimidine tract upstream exon 56 of DNAH17 (XM_021066525.1: c.8510-17_8510-5del) encoding dynein axonemal heavy chain 17. Transcriptome analysis of the testis of two affected boars revealed that the loss of the polypyrimidine tract causes exon skipping which results in the in-frame loss of 89 amino acids from DNAH17. Disruption of DNAH17 impairs the assembly of the flagellar axoneme and manifests in multiple morphological abnormalities of the sperm flagella. Direct gene testing may now be implemented to monitor the defective allele in the Swiss Large White population and prevent the frequent manifestation of a sterilizing sperm tail disorder in breeding boars.


Assuntos
Dineínas do Axonema/genética , Deleção de Genes , Infertilidade Masculina/genética , Splicing de RNA , Cauda do Espermatozoide/metabolismo , Suínos/genética , Animais , Dineínas do Axonema/metabolismo , Haplótipos , Infertilidade Masculina/veterinária , Masculino , Polimorfismo de Nucleotídeo Único , Cauda do Espermatozoide/ultraestrutura
2.
Front Vet Sci ; 6: 240, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31380403

RESUMO

Defined Daily Doses (DDD) and Defined Course Doses (DCD) have been established in both human and veterinary medicine in order to standardize the measurement of treatments in a population. In 2016 the European Medicines Agency published average defined daily dose (DDDvet) and defined course dose (DCDvet) values for antimicrobial agents used in livestock production. Similarly, national defined doses (DDDch and DCDch) for the pig sector in Switzerland have recently been determined. The aim of this study was to compare the outcome of calculating antimicrobial consumption based on either DDDvet/DCDvet or DDDch/DCDch. Data from 227 Swiss pig farms describing antimicrobial use in 2015 was collected. The numbers of treatment days and treatments were calculated using DDDvet/DCDvet and DDDch/DCDch respectively, for each farm in total and for different antimicrobial classes. Associations between calculated numbers of DDDvet/DCDvet and DDDch/DCDch on farm level were investigated. In addition, differences concerning antimicrobial use were investigated between different production types of farms (piglet-producer, finishing farm or farrow-to-finishing farm). Using DDDch/DCDch values we calculated 1,805,494 treatment days and 433,678 treatments compared to 1,456,771 treatment days (19% ratio) and 303,913 treatments (30% ratio) based on DDDvet/DCDvet. Penicillins (21.4/26.6%), polypeptides (18.6/27.6%) and fluoroquinolones (9.5/8.8%) were the most frequently used classes of antimicrobials based on calculation using both DDDch and DDDvet. Similar findings were observed for complete treatments (DCDch/vet) (penicillins: 52.8/39.6%; polypeptides: 7.8/14.2%; fluoroquinolones: 13.2/12.9%). The number of treatment days or treatments per farm was higher for piglet-producers and farrow-to-finishing farms compared to finisher farms regardless of whether Swiss or European DDD or DCD values were used for the calculation (each P < 0.001). Similar results for antimicrobial use (AMU) obtained at farm level were observed when calculated either by Swiss or European definitions. Nevertheless, marked differences could be observed in the assessment of the use of specific antimicrobial classes in the field based on DDDvet/DCDvet compared to DDDch/DCDch.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA