Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxid Redox Signal ; 38(1-3): 183-197, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35754343

RESUMO

Aims: Though best known for its role in oxidative DNA damage repair, apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional protein that regulates multiple host responses during oxidative stress, including the reductive activation of transcription factors. As knockout of the APE1-encoding gene, Apex1, is embryonically lethal, we sought to create a viable model with generalized inhibition of APE1 expression. Results: A hypomorphic (HM) mouse with decreased APE1 expression throughout the body was generated using a construct containing a neomycin resistance (NeoR) cassette knocked into the Apex1 site. Offspring were assessed for APE1 expression, breeding efficiency, and morphology with a focused examination of DNA damage in the stomach. Heterozygotic breeding pairs yielded 50% fewer HM mice than predicted by Mendelian genetics. APE1 expression was reduced up to 90% in the lungs, heart, stomach, and spleen. The HM offspring were typically smaller, and most had a malformed tail. Oxidative DNA damage was increased spontaneously in the stomachs of HM mice. Further, all changes were reversed when the NeoR cassette was removed. Primary gastric epithelial cells from HM mice differentiated more quickly and had more evidence of oxidative DNA damage after stimulation with Helicobacter pylori or a chemical carcinogen than control lines from wildtype mice. Innovation: A HM mouse with decreased APE1 expression throughout the body was generated and extensively characterized. Conclusion: The results suggest that HM mice enable studies of APE1's multiple functions throughout the body. The detailed characterization of the stomach showed that gastric epithelial cells from HM were more susceptible to DNA damage. Antioxid. Redox Signal. 38, 183-197.


Assuntos
Reparo do DNA , Estresse Oxidativo , Camundongos , Animais , Dano ao DNA , Oxirredução , Modelos Animais de Doenças , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Estômago , Endonucleases/genética , Endonucleases/metabolismo
2.
PLoS Negl Trop Dis ; 16(4): e0010323, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35468132

RESUMO

Giardia lamblia is a leading protozoal cause of diarrheal disease worldwide. Infection is associated with abdominal pain, malabsorption and weight loss, and protracted post-infectious syndromes. A human vaccine is not available against G. lamblia. Prior studies with human and murine immune sera have identified several parasite antigens, including surface proteins and metabolic enzymes with intracellular functions. While surface proteins have demonstrated vaccine potential, they can exhibit significant variation between G. lamblia strains. By comparison, metabolic enzymes show greater conservation but their vaccine potential has not been established. To determine whether such proteins can serve as vaccine candidates, we focused on two enzymes, α-enolase (ENO) and ornithine carbamoyl transferase (OCT), which are involved in glycolysis and arginine metabolism, respectively. We show in a cohort of patients with confirmed giardiasis that both enzymes are immunogenic. Intranasal immunization with either enzyme antigen in mice induced strong systemic IgG1 and IgG2b responses and modest mucosal IgA responses, and a marked 100- to 1,000-fold reduction in peak trophozoite load upon oral G. lamblia challenge. ENO immunization also reduced the extent and duration of cyst excretion. Examination of 44 cytokines showed only minimal intestinal changes in immunized mice, although a modest increase of CCL22 was observed in ENO-immunized mice. Spectral flow cytometry revealed increased numbers and activation state of CD4 T cells in the small intestine and an increase in α4ß7-expressing CD4 T cells in mesenteric lymph nodes of ENO-immunized mice. Consistent with a key role of CD4 T cells, immunization of CD4-deficient and Rag-2 deficient mice failed to induce protection, whereas mice lacking IgA were fully protected by immunization, indicating that immunity was CD4 T cell-dependent but IgA-independent. These results demonstrate that conserved metabolic enzymes can be effective vaccine antigens for protection against G. lamblia infection, thereby expanding the repertoire of candidate antigens beyond primary surface proteins.


Assuntos
Giardia lamblia , Giardíase , Animais , Antígenos de Protozoários , Giardia , Giardíase/parasitologia , Humanos , Imunoglobulina A , Imunoglobulina G , Proteínas de Membrana , Camundongos
3.
Science ; 375(6577): 214-221, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35025664

RESUMO

Atherosclerosis is an inflammatory disease of the artery walls and involves immune cells such as macrophages. Olfactory receptors (OLFRs) are G protein­coupled chemoreceptors that have a central role in detecting odorants and the sense of smell. We found that mouse vascular macrophages express the olfactory receptor Olfr2 and all associated trafficking and signaling molecules. Olfr2 detects the compound octanal, which activates the NLR family pyrin domain containing 3 (NLRP3) inflammasome and induces interleukin-1ß secretion in human and mouse macrophages. We found that human and mouse blood plasma contains octanal, a product of lipid peroxidation, at concentrations sufficient to activate Olfr2 and the human ortholog olfactory receptor 6A2 (OR6A2). Boosting octanal levels exacerbated atherosclerosis, whereas genetic targeting of Olfr2 in mice significantly reduced atherosclerotic plaques. Our findings suggest that inhibiting OR6A2 may provide a promising strategy to prevent and treat atherosclerosis.


Assuntos
Aldeídos/metabolismo , Aterosclerose/metabolismo , Interleucina-1/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Receptores Odorantes/metabolismo , Adulto , Aldeídos/análise , Aldeídos/sangue , Aldeídos/farmacologia , Animais , Aorta , Aterosclerose/tratamento farmacológico , Humanos , Inflamassomos/metabolismo , Interleucina-1alfa/metabolismo , Peroxidação de Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Receptores Odorantes/antagonistas & inibidores , Receptores Odorantes/genética , Transdução de Sinais
4.
Mol Microbiol ; 116(6): 1489-1511, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34738285

RESUMO

Trichomoniasis is a common and widespread sexually-transmitted infection, caused by the protozoan parasite Trichomonas vaginalis. T. vaginalis lacks the biosynthetic pathways for purines and pyrimidines, making nucleoside metabolism a drug target. Here we report the first comprehensive investigation into purine and pyrimidine uptake by T. vaginalis. Multiple carriers were identified and characterized with regard to substrate selectivity and affinity. For nucleobases, a high-affinity adenine transporter, a possible guanine transporter and a low affinity uracil transporter were found. Nucleoside transporters included two high affinity adenosine/guanosine/uridine/cytidine transporters distinguished by different affinities to inosine, a lower affinity adenosine transporter, and a thymidine transporter. Nine Equilibrative Nucleoside Transporter (ENT) genes were identified in the T. vaginalis genome. All were expressed equally in metronidazole-resistant and -sensitive strains. Only TvagENT2 was significantly upregulated in the presence of extracellular purines; expression was not affected by co-culture with human cervical epithelial cells. All TvagENTs were cloned and separately expressed in Trypanosoma brucei. We identified the main broad specificity nucleoside carrier, with high affinity for uridine and cytidine as well as purine nucleosides including inosine, as TvagENT3. The in-depth characterization of purine and pyrimidine transporters provides a critical foundation for the development of new anti-trichomonal nucleoside analogues.


Assuntos
Proteínas de Transporte de Nucleosídeos/metabolismo , Proteínas de Protozoários/metabolismo , Purinas/metabolismo , Pirimidinas/metabolismo , Tricomoníase/parasitologia , Trichomonas vaginalis/metabolismo , Transporte Biológico , Clonagem Molecular , Humanos , Cinética , Proteínas de Transporte de Nucleosídeos/química , Proteínas de Transporte de Nucleosídeos/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Trichomonas vaginalis/química , Trichomonas vaginalis/genética
5.
J Clin Invest ; 131(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34623320

RESUMO

Genome-wide association studies revealed that loss-of-function mutations in protein tyrosine phosphatase non-receptor type 2 (PTPN2) increase the risk of developing chronic immune diseases, such as inflammatory bowel disease (IBD) and celiac disease. These conditions are associated with increased intestinal permeability as an early etiological event. The aim of this study was to examine the consequences of deficient activity of the PTPN2 gene product, T cell protein tyrosine phosphatase (TCPTP), on intestinal barrier function and tight junction organization in vivo and in vitro. Here, we demonstrate that TCPTP protected against intestinal barrier dysfunction induced by the inflammatory cytokine IFN-γ by 2 mechanisms: it maintained localization of zonula occludens 1 and occludin at apical tight junctions and restricted both expression and insertion of the cation pore-forming transmembrane protein, claudin-2, at tight junctions through upregulation of the inhibitory cysteine protease, matriptase. We also confirmed that the loss-of-function PTPN2 rs1893217 SNP was associated with increased intestinal claudin-2 expression in patients with IBD. Moreover, elevated claudin-2 levels and paracellular electrolyte flux in TCPTP-deficient intestinal epithelial cells were normalized by recombinant matriptase. Our findings uncover distinct and critical roles for epithelial TCPTP in preserving intestinal barrier integrity, thereby proposing a mechanism by which PTPN2 mutations contribute to IBD.


Assuntos
Mucosa Intestinal/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Junções Íntimas/metabolismo , Adolescente , Adulto , Idoso , Animais , Claudinas/metabolismo , Modelos Animais de Doenças , Feminino , Estudo de Associação Genômica Ampla , Humanos , Técnicas In Vitro , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Permeabilidade , Polimorfismo de Nucleotídeo Único , Proteína Tirosina Fosfatase não Receptora Tipo 2/deficiência , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Junções Íntimas/patologia , Adulto Jovem
6.
Microb Genom ; 6(8)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32618561

RESUMO

Diplomonad parasites of the genus Giardia have adapted to colonizing different hosts, most notably the intestinal tract of mammals. The human-pathogenic Giardia species, Giardia intestinalis, has been extensively studied at the genome and gene expression level, but no such information is available for other Giardia species. Comparative data would be particularly valuable for Giardia muris, which colonizes mice and is commonly used as a prototypic in vivo model for investigating host responses to intestinal parasitic infection. Here we report the draft-genome of G. muris. We discovered a highly streamlined genome, amongst the most densely encoded ever described for a nuclear eukaryotic genome. G. muris and G. intestinalis share many known or predicted virulence factors, including cysteine proteases and a large repertoire of cysteine-rich surface proteins involved in antigenic variation. Different to G. intestinalis, G. muris maintains tandem arrays of pseudogenized surface antigens at the telomeres, whereas intact surface antigens are present centrally in the chromosomes. The two classes of surface antigens engage in genetic exchange. Reconstruction of metabolic pathways from the G. muris genome suggest significant metabolic differences to G. intestinalis. Additionally, G. muris encodes proteins that might be used to modulate the prokaryotic microbiota. The responsible genes have been introduced in the Giardia genus via lateral gene transfer from prokaryotic sources. Our findings point to important evolutionary steps in the Giardia genus as it adapted to different hosts and it provides a powerful foundation for mechanistic exploration of host-pathogen interaction in the G. muris-mouse pathosystem.


Assuntos
Antígenos de Protozoários/genética , Evolução Biológica , Giardia , Giardíase/parasitologia , Proteínas de Protozoários , Fatores de Virulência , Animais , Genoma de Protozoário , Giardia/genética , Giardia/imunologia , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Especificidade da Espécie , Fatores de Virulência/genética , Fatores de Virulência/imunologia
7.
Front Immunol ; 11: 553994, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33603730

RESUMO

Pathogenic intestinal bacteria lead to significant disease in humans. Here we investigated the role of the multifunctional protein, Apurinic/apyrimidinic endonuclease 1 (APE1), in regulating the internalization of bacteria into the intestinal epithelium. Intestinal tumor-cell lines and primary human epithelial cells were infected with Salmonella enterica serovar Typhimurium or adherent-invasive Escherichia coli. The effects of APE1 inhibition on bacterial internalization, the regulation of Rho GTPase Rac1 as well as the epithelial cell barrier function were assessed. Increased numbers of bacteria were present in APE1-deficient colonic tumor cell lines and primary epithelial cells. Activation of Rac1 was augmented following infection but negatively regulated by APE1. Pharmacological inhibition of Rac1 reversed the increase in intracellular bacteria in APE1-deficient cells whereas overexpression of constitutively active Rac1 augmented the numbers in APE1-competent cells. Enhanced numbers of intracellular bacteria resulted in the loss of barrier function and a delay in its recovery. Our data demonstrate that APE1 inhibits the internalization of invasive bacteria into human intestinal epithelial cells through its ability to negatively regulate Rac1. This activity also protects epithelial cell barrier function.


Assuntos
Colo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/imunologia , Células Epiteliais , Infecções por Escherichia coli , Escherichia coli/imunologia , Mucosa Intestinal , Infecções por Salmonella , Salmonella typhimurium/imunologia , Proteínas rac1 de Ligação ao GTP/imunologia , Colo/imunologia , Colo/microbiologia , Colo/patologia , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/patologia , Células HT29 , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Infecções por Salmonella/imunologia , Infecções por Salmonella/patologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-31451503

RESUMO

Trichomoniasis is a sexually transmitted disease with hundreds of millions of annual cases worldwide. Approved treatment options are limited to two related nitro-heterocyclic compounds, yet resistance to these drugs is an increasing concern. New antimicrobials against the causative agent, Trichomonas vaginalis, are urgently needed. We show here that clinically approved anticancer drugs that inhibit the proteasome, a large protease complex with a critical role in degrading intracellular proteins in eukaryotes, have submicromolar activity against the parasite in vitro and on-target activity against the enriched T. vaginalis proteasome in cell-free assays. Proteomic analysis confirmed that the parasite has all seven α and seven ß subunits of the eukaryotic proteasome although they have only modest sequence identities, ranging from 28 to 52%, relative to the respective human proteasome subunits. A screen of proteasome inhibitors derived from a marine natural product, carmaphycin, revealed one derivative, carmaphycin-17, with greater activity against T. vaginalis than the reference drug metronidazole, the ability to overcome metronidazole resistance, and reduced human cytotoxicity compared to that of the anticancer proteasome inhibitors. The increased selectivity of carmaphycin-17 for T. vaginalis was related to its >5-fold greater potency against the ß1 and ß5 catalytic subunits of the T. vaginalis proteasome than against the human proteasome subunits. In a murine model of vaginal trichomonad infection, proteasome inhibitors eliminated or significantly reduced parasite burden upon topical treatment without any apparent adverse effects. Together, these findings validate the proteasome of T. vaginalis as a therapeutic target for development of a novel class of trichomonacidal agents.


Assuntos
Antitricômonas/farmacologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/genética , Vaginite por Trichomonas/tratamento farmacológico , Trichomonas vaginalis/efeitos dos fármacos , Trichomonas vaginalis/genética , Sequência de Aminoácidos , Animais , Anti-Infecciosos/farmacologia , Citoplasma/parasitologia , Resistência a Medicamentos/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Parasitária/métodos , Proteômica/métodos , Infecções Sexualmente Transmissíveis/tratamento farmacológico , Infecções Sexualmente Transmissíveis/parasitologia , Tricomoníase/tratamento farmacológico , Tricomoníase/parasitologia , Vaginite por Trichomonas/parasitologia
9.
Clin Gastroenterol Hepatol ; 17(13): 2634-2643, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31009791

RESUMO

Crohn's disease (CD) is an inflammatory bowel disease that can involve any region of the gastrointestinal tract. First described in 1932 as terminal ileitis or regional enteritis, it predominately involves the ileum with or without colonic involvement. Isolated colonic CD was first described in 1960 and since then the phenotypic classification of CD has evolved to stratify patients into isolated ileal, ileocolonic, or isolated colonic involvement. In the current review we evaluate the published literature regarding differences in epidemiology, natural history, pathogenesis, response to therapy, and disease monitoring, when stratified by disease location. Based on the available evidence consideration could be given to a new classification for CD, which splits it into ileum dominant (isolated ileal and ileocolonic) and isolated colonic disease. This may allow for a more optimized approach to clinical care and scientific research for CD.


Assuntos
Colite/fisiopatologia , Doença de Crohn/classificação , Doença de Crohn/fisiopatologia , Ileíte/fisiopatologia , Autofagia/fisiologia , Colite/epidemiologia , Colite/imunologia , Colite/terapia , Doença de Crohn/epidemiologia , Doença de Crohn/terapia , Citocinas/imunologia , Progressão da Doença , Microbioma Gastrointestinal/fisiologia , Humanos , Ileíte/epidemiologia , Ileíte/imunologia , Ileíte/terapia , Fatores de Risco , Linfócitos T/imunologia
10.
Int J Parasitol Drugs Drug Resist ; 8(3): 394-402, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30103207

RESUMO

Babesiosis is a tick-transmitted zoonosis caused by apicomplexan parasites of the genus Babesia. Treatment of this emerging malaria-related disease has relied on antimalarial drugs and antibiotics. The proteasome of Plasmodium, the causative agent of malaria, has recently been validated as a target for anti-malarial drug development and therefore, in this study, we investigated the effect of epoxyketone (carfilzomib, ONX-0914 and epoxomicin) and boronic acid (bortezomib and ixazomib) proteasome inhibitors on the growth and survival of Babesia. Testing the compounds against Babesia divergens ex vivo revealed suppressive effects on parasite growth with activity that was higher than the cytotoxic effects on a non-transformed mouse macrophage cell line. Furthermore, we showed that the most-effective compound, carfilzomib, significantly reduces parasite multiplication in a Babesia microti infected mouse model without noticeable adverse effects. In addition, treatment with carfilzomib lead to an ex vivo and in vivo decrease in proteasome activity and accumulation of polyubiquitinated proteins compared to untreated control. Overall, our results demonstrate that the Babesia proteasome is a valid target for drug development and warrants the design of potent and selective B. divergens proteasome inhibitors for the treatment of babesiosis.


Assuntos
Babesia microti/efeitos dos fármacos , Babesia/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Proteoma/efeitos dos fármacos , Animais , Babesia/genética , Babesia/crescimento & desenvolvimento , Babesia microti/genética , Babesia microti/crescimento & desenvolvimento , Babesiose/tratamento farmacológico , Ácidos Borônicos/farmacologia , Linhagem Celular , Modelos Animais de Doenças , Feminino , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Oligopeptídeos/farmacologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/administração & dosagem , Inibidores de Proteassoma/efeitos adversos , Proteoma/genética
11.
Inflamm Bowel Dis ; 24(11): 2366-2376, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29889233

RESUMO

Background: Novel therapeutics for inflammatory bowel disease (IBD) are under development, yet mechanistic readouts at the tissue level are lacking. Techniques to assess intestinal immune composition could represent a valuable tool for mechanism of action (MOA) studies of novel drugs. Mass cytometry enables analysis of intestinal inflammatory cell infiltrate and corresponding molecular fingerprints with unprecedented resolution. Here, we aimed to optimize the methodology for isolation and cryopreservation of cells from intestinal tissue to allow for the potential implementation of mass cytometry in MOA studies. Methods: We investigated key technical issues, including minimal tissue requirements, cell isolation protocols, and cell storage, using intestinal biopsies and peripheral blood from healthy individuals. High-dimensional mass cytometry was employed for the analyses of biopsy-derived intestinal cellular subsets. Results: Dithiothreitol and mechanical dissociation decreased epithelial cell contamination and allowed for isolation of adequate cell numbers from 2 to 4 colonic or ileal biopsies (6 × 104±2 × 104) after a 20-minute collagenase digestion, allowing for reliable detection of most major immune cell subsets. Biopsies and antibody-labeled mononuclear cells could be cryopreserved for later processing and acquisition (viability > 70%; P < 0.05). Conclusions: Mass cytometry represents a unique tool for deep immunophenotyping intestinal cell composition. This technique has the potential to facilitate analysis of drug actions at the target tissue by identifying specific cellular subsets and their molecular signatures. Its widespread implementation may impact not only IBD research but also other gastrointestinal conditions where inflammatory cells play a role in pathogenesis.


Assuntos
Células Epiteliais/imunologia , Citometria de Fluxo/métodos , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/imunologia , Leucócitos Mononucleares/imunologia , Espectrometria de Massas/métodos , Idoso , Criopreservação , Células Epiteliais/citologia , Humanos , Imunofenotipagem , Mucosa Intestinal/citologia , Pessoa de Meia-Idade
12.
PLoS Negl Trop Dis ; 12(2): e0006266, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29470490

RESUMO

Diarrheal diseases are a major cause of morbidity and mortality worldwide. In many cases, antibiotic therapy is either ineffective or not recommended due to concerns about emergence of resistance. The pathogenesis of several of the most prevalent infections, including cholera and enteroxigenic Escherichia coli, is dominated by enterotoxins produced by lumen-dwelling pathogens before clearance by intestinal defenses. Toxins gain access to the host through critical host receptors, making these receptors attractive targets for alternative antimicrobial strategies that do not rely on conventional antibiotics. Here, we developed a new nanotechnology strategy as a countermeasure against cholera, one of the most important and prevalent toxin-mediated enteric infections. The key host receptor for cholera toxin, monosialotetrahexosylganglioside (GM1), was coated onto the surface of polymeric nanoparticles. The resulting GM1-polymer hybrid nanoparticles were shown to function as toxin decoys by selectively and stably binding cholera toxin, and neutralizing its actions on epithelial cells in vitro and in vivo. Furthermore, the GM1-coated nanoparticle decoys attenuated epithelial 3',5'-cyclic adenosine monophosphate production and fluid responses to infection with live Vibrio cholera in cell culture and a murine infection model. Together, these studies illustrate that the new nanotechnology-based platform can be employed as a non-traditional antimicrobial strategy for the management of enteric infections with enterotoxin-producing pathogens.


Assuntos
Toxina da Cólera/metabolismo , Cólera/tratamento farmacológico , Gangliosídeo G(M1)/metabolismo , Nanopartículas , Vibrio cholerae/patogenicidade , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Cólera/microbiologia , Cólera/fisiopatologia , Toxina da Cólera/química , AMP Cíclico/metabolismo , Feminino , Gangliosídeo G(M1)/química , Mucosa Intestinal/metabolismo , Intestino Delgado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Nanotecnologia/métodos
13.
J Infect Dis ; 216(12): 1655-1666, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29029244

RESUMO

Macrophages are specialized phagocytic cells involved in clearing invading pathogens. Previously we reported that engulfment and cell motility protein 1 (ELMO1) in macrophages mediates bacterial internalization and intestinal inflammation. Here we studied the role of ELMO1 in the fate of internalized targets. ELMO1 is present in the intracellular vesicles and enhances accumulation of the protein LC3B following engulfment of Salmonella or treatment with autophagy-inducing rapamycin. The protein ATG5 and the kinase ULK1 are involved in classical autophagy, while LC3-associated phagocytosis is ULK1 independent. ATG5 but not ULK1 cooperated with ELMO1 in LC3 accumulation after infection, suggesting the ELMO1 preferentially regulated LC3-associated phagocytosis. Because LC3-associated phagocytosis delivers cargo for degradation, the contribution of ELMO1 to the lysosome degradation pathways was evaluated by studying pH and cathepsin B activity. ELMO1-depleted macrophages showed a time-dependent increase in pH and a decrease in cathepsin B activity associated with bacterial survival. Together, ELMO1 regulates LC3B accumulation and antimicrobial responses involved in the clearance of enteric pathogens. This paper investigated how innate immune pathways involving ELMO1 work in a coordinated fashion to eliminate bacterial threats. ELMO1 is present in the phagosome and enhances bacterial clearance by differential regulation of lysosomal acidification and enzymatic activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Macrófagos/imunologia , Macrófagos/microbiologia , Infecções por Salmonella/patologia , Salmonella/crescimento & desenvolvimento , Salmonella/imunologia , Animais , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Catepsina B/análise , Linhagem Celular , Modelos Animais de Doenças , Concentração de Íons de Hidrogênio , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo
14.
Cell Immunol ; 310: 205-210, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27593154

RESUMO

Innate immune responses to dsRNA result in signaling through the TLR3 pathway and/or the RIG-I/MDA-5/MAVS pathway which can activate type I IFN, proinflammatory cytokines and apoptosis. It is not clear whether MAVS could play a role in TLR3-dependent responses to extracellular dsRNA. Using a model of epithelial cells that express a functional TLR3 signaling pathway, we found that TLR3-dependent responses to extracellular dsRNA are negatively regulated by MAVS, precisely "miniMAVS", a recently described 50kDa isoform of MAVS. This regulation of TLR3 by a MAVS isoform constitutes an endogenous regulatory mechanism in epithelial cells that could help prevent a potentially damaging excessive inflammatory response.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Epiteliais/fisiologia , Isoformas de Proteínas/metabolismo , Receptor 3 Toll-Like/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose , Células HCT116 , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/metabolismo , NF-kappa B/metabolismo , Poli I-C/imunologia , Isoformas de Proteínas/genética , RNA Interferente Pequeno/genética , Transdução de Sinais , Receptor 3 Toll-Like/genética
15.
PLoS One ; 11(1): e0148216, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26820624

RESUMO

BACKGROUND & AIMS: Intestinal microfold (M) cells are specialized epithelial cells that act as gatekeepers of luminal antigens in the intestinal tract. They play a critical role in the intestinal mucosal immune response through transport of viruses, bacteria and other particles and antigens across the epithelium to immune cells within Peyer's patch regions and other mucosal sites. Recent studies in mice have demonstrated that M cells are generated from Lgr5+ intestinal stem cells (ISCs), and that infection with Salmonella enterica serovar Typhimurium increases M cell formation. However, it is not known whether and how these findings apply to primary human small intestinal epithelium propagated in an in vitro setting. METHODS: Human intestinal crypts were grown as monolayers with growth factors and treated with recombinant RANKL, and assessed for mRNA transcripts, immunofluorescence and uptake of microparticles and S. Typhimurium. RESULTS: Functional M cells were generated by short-term culture of freshly isolated human intestinal crypts in a dose- and time-dependent fashion. RANKL stimulation of the monolayer cultures caused dramatic induction of the M cell-specific markers, SPIB, and Glycoprotein-2 (GP2) in a process primed by canonical WNT signaling. Confocal microscopy demonstrated a pseudopod phenotype of GP2-positive M cells that preferentially take up microparticles. Furthermore, infection of the M cell-enriched cultures with the M cell-tropic enteric pathogen, S. Typhimurium, led to preferential association of the bacteria with M cells, particularly at lower inoculum sizes. Larger inocula caused rapid induction of M cells. CONCLUSIONS: Human intestinal crypts containing ISCs can be cultured and differentiate into an epithelial layer with functional M cells with characteristic morphological and functional properties. This study is the first to demonstrate that M cells can be induced to form from primary human intestinal epithelium, and that S. Typhimurium preferentially infect these cells in an in vitro setting. We anticipate that this model can be used to generate large numbers of M cells for further functional studies of these key cells of intestinal immune induction and their impact on controlling enteric pathogens and the intestinal microbiome.


Assuntos
Mucosa Intestinal/citologia , Intestino Delgado/citologia , Nódulos Linfáticos Agregados/citologia , Células-Tronco/citologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células Cultivadas , Humanos , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Intestino Delgado/imunologia , Intestino Delgado/microbiologia , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/microbiologia , Ligante RANK/imunologia , Salmonella typhimurium/imunologia , Células-Tronco/imunologia
16.
PLoS Pathog ; 12(1): e1005382, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26761793

RESUMO

Generation of reactive oxygen species (ROS) during infection is an immediate host defense leading to microbial killing. APE1 is a multifunctional protein induced by ROS and after induction, protects against ROS-mediated DNA damage. Rac1 and NAPDH oxidase (Nox1) are important contributors of ROS generation following infection and associated with gastrointestinal epithelial injury. The purpose of this study was to determine if APE1 regulates the function of Rac1 and Nox1 during oxidative stress. Gastric or colonic epithelial cells (wild-type or with suppressed APE1) were infected with Helicobacter pylori or Salmonella enterica and assessed for Rac1 and NADPH oxidase-dependent superoxide production. Rac1 and APE1 interactions were measured by co-immunoprecipitation, confocal microscopy and proximity ligation assay (PLA) in cell lines or in biopsy specimens. Significantly greater levels of ROS were produced by APE1-deficient human gastric and colonic cell lines and primary gastric epithelial cells compared to control cells after infection with either gastric or enteric pathogens. H. pylori activated Rac1 and Nox1 in all cell types, but activation was higher in APE1 suppressed cells. APE1 overexpression decreased H. pylori-induced ROS generation, Rac1 activation, and Nox1 expression. We determined that the effects of APE1 were mediated through its N-terminal lysine residues interacting with Rac1, leading to inhibition of Nox1 expression and ROS generation. APE1 is a negative regulator of oxidative stress in the gastrointestinal epithelium during bacterial infection by modulating Rac1 and Nox1. Our results implicate APE1 in novel molecular interactions that regulate early stress responses elicited by microbial infections.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Mucosa Gástrica/imunologia , Infecções por Helicobacter/imunologia , Mucosa Intestinal/imunologia , Infecções por Salmonella/imunologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Western Blotting , Linhagem Celular , Imunofluorescência , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Infecções por Helicobacter/metabolismo , Humanos , Imunoprecipitação , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Microscopia Confocal , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Infecções por Salmonella/metabolismo , Proteínas rac1 de Ligação ao GTP/imunologia
17.
J Leukoc Biol ; 99(3): 475-82, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26467188

RESUMO

The programmed death-1 receptor is expressed on a wide range of immune effector cells, including T cells, natural killer T cells, dendritic cells, macrophages, and natural killer cells. In malignancies and chronic viral infections, increased expression of programmed death-1 by T cells is generally associated with a poor prognosis. However, its role in early host microbial defense at the intestinal mucosa is not well understood. We report that programmed death-1 expression is increased on conventional natural killer cells but not on CD4(+), CD8(+) or natural killer T cells, or CD11b(+) or CD11c(+) macrophages or dendritic cells after infection with the mouse pathogen Citrobacter rodentium. Mice genetically deficient in programmed death-1 or treated with anti-programmed death-1 antibody were more susceptible to acute enteric and systemic infection with Citrobacter rodentium. Wild-type but not programmed death-1-deficient mice infected with Citrobacter rodentium showed significantly increased expression of the conventional mucosal NK cell effector molecules granzyme B and perforin. In contrast, natural killer cells from programmed death-1-deficient mice had impaired expression of those mediators. Consistent with programmed death-1 being important for intracellular expression of natural killer cell effector molecules, mice depleted of natural killer cells and perforin-deficient mice manifested increased susceptibility to acute enteric infection with Citrobacter rodentium. Our findings suggest that increased programmed death-1 signaling pathway expression by conventional natural killer cells promotes host protection at the intestinal mucosa during acute infection with a bacterial gut pathogen by enhancing the expression and production of important effectors of natural killer cell function.


Assuntos
Citrobacter rodentium , Infecções por Enterobacteriaceae/imunologia , Mucosa Intestinal/imunologia , Células Matadoras Naturais/imunologia , Receptor de Morte Celular Programada 1/fisiologia , Animais , Colo/imunologia , Feminino , Granzimas/biossíntese , Interferon gama/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Perforina/biossíntese , Transdução de Sinais
18.
Mol Cancer ; 14: 182, 2015 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-26497569

RESUMO

BACKGROUND: Understanding cell signaling pathways that contribute to metastatic colon cancer is critical to risk stratification in the era of personalized therapeutics. Here, we dissect the unique involvement of mitogenic pathways in a TGFß or activin-induced metastatic phenotype of colon cancer. METHOD: Mitogenic signaling/growth factor receptor status and p21 localization were correlated in primary colon cancers and intestinal tumors from either AOM/DSS treated ACVR2A (activin receptor 2) -/- or wild type mice. Colon cancer cell lines (+/- SMAD4) were interrogated for ligand-induced PI3K and MEK/ERK pathway activation and downstream protein/phospho-isoform expression/association after knockdown and pharmacologic inhibition of pathway members. EMT was assessed using epithelial/mesenchymal markers and migration assays. RESULTS: In primary colon cancers, loss of nuclear p21 correlated with upstream activation of activin/PI3K while nuclear p21 expression was associated with TGFß/MEK/ERK pathway activation. Activin, but not TGFß, led to PI3K activation via interaction of ACVR1B and p85 independent of SMAD4, resulting in p21 downregulation. In contrast, TGFß increased p21 via MEK/ERK pathway through a SMAD4-dependent mechanism. While activin induced EMT via PI3K, TGFß induced EMT via MEK/ERK activation. In vivo, loss of ACVR2A resulted in loss of pAkt, consistent with activin-dependent PI3K signaling. CONCLUSION: Although activin and TGFß share growth suppressive SMAD signaling in colon cancer, they diverge in their SMAD4-independent pro-migratory signaling utilizing distinct mitogenic signaling pathways that affect EMT. p21 localization in colon cancer may determine a dominant activin versus TGFß ligand signaling phenotype warranting further validation as a therapeutic biomarker prior to targeting TGFß family receptors.


Assuntos
Ativinas/metabolismo , Neoplasias do Colo/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Ativinas/genética , Animais , Western Blotting , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Imuno-Histoquímica , Imunoprecipitação , Técnicas In Vitro , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética
19.
J Clin Invest ; 125(9): 3606-18, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26280574

RESUMO

Mesenchymal stem cell (MSC) therapy is an emerging field of regenerative medicine; however, it is often unclear how these cells mediate repair. Here, we investigated the use of MSCs in the treatment of intestinal disease and modeled abnormal repair by creating focal wounds in the colonic mucosa of prostaglandin-deficient mice. These wounds developed into ulcers that infiltrated the outer intestinal wall. We determined that penetrating ulcer formation in this model resulted from increased hypoxia and smooth muscle wall necrosis. Prostaglandin I2 (PGI2) stimulated VEGF-dependent angiogenesis to prevent penetrating ulcers. Treatment of mucosally injured WT mice with a VEGFR inhibitor resulted in the development of penetrating ulcers, further demonstrating that VEGF is critical for mucosal repair. We next used this model to address the role of transplanted colonic MSCs (cMSCs) in intestinal repair. Compared with intravenously injected cMSCs, mucosally injected cMSCs more effectively prevented the development of penetrating ulcers, as they were more efficiently recruited to colonic wounds. Importantly, mucosally injected cMSCs stimulated angiogenesis in a VEGF-dependent manner. Together, our results reveal that penetrating ulcer formation results from a reduction of local angiogenesis and targeted injection of MSCs can optimize transplantation therapy. Moreover, local MSC injection has potential for treating diseases with features of abnormal angiogenesis and repair.


Assuntos
Colo , Mucosa Intestinal , Transplante de Células-Tronco Mesenquimais , Neovascularização Fisiológica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização , Ferimentos e Lesões , Aloenxertos , Animais , Colo/lesões , Colo/metabolismo , Colo/patologia , Epoprostenol/genética , Epoprostenol/metabolismo , Mucosa Intestinal/lesões , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Knockout , Fator A de Crescimento do Endotélio Vascular/genética , Ferimentos e Lesões/genética , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia , Ferimentos e Lesões/terapia
20.
Eur J Med Chem ; 101: 96-102, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26117821

RESUMO

Metronidazole has been used clinically for over 50 years as an antiparasitic and broad-spectrum antibacterial agent effective against anaerobic bacteria. However resistance to metronidazole in parasites and bacteria has been reported, and improved second-generation metronidazole analogues are needed. The copper catalysed Huigsen azide-alkyne 1,3-dipolar cycloaddition offers a way to efficiently assemble new libraries of metronidazole analogues. Several new metronidazole-triazole conjugates (Mtz-triazoles) have been identified with excellent broad spectrum antimicrobial and antiparasitic activity targeting Clostridium difficile, Entamoeba histolytica and Giardia lamblia. Cross resistance to metronidazole was observed against stable metronidazole resistant C. difficile and G. lamblia strains. However for the most potent Mtz-triazoles, the activity remained in a therapeutically relevant window.


Assuntos
Antibacterianos/farmacologia , Antiparasitários/farmacologia , Clostridioides difficile/efeitos dos fármacos , Metronidazol/química , Metronidazol/farmacologia , Parasitos/efeitos dos fármacos , Triazóis/química , Triazóis/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antiparasitários/síntese química , Antiparasitários/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Entamoeba histolytica/efeitos dos fármacos , Giardia lamblia/efeitos dos fármacos , Células HEK293 , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA