Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med ; 3(12): 860-882.e15, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36257298

RESUMO

BACKGROUND: The near impermeability of the blood-brain barrier (BBB) and the unique neuroimmune environment of the CNS prevents the effective use of antibodies in neurological diseases. Delivery of biotherapeutics to the brain can be enabled through receptor-mediated transcytosis via proteins such as the transferrin receptor, although limitations such as the ability to use Fc-mediated effector function to clear pathogenic targets can introduce safety liabilities. Hence, novel delivery approaches with alternative clearance mechanisms are warranted. METHODS: Binders that optimized transport across the BBB, known as transcytosis-enabling modules (TEMs), were identified using a combination of antibody discovery techniques and pharmacokinetic analyses. Functional activity of TEMs were subsequently evaluated by imaging for the ability of myeloid cells to phagocytose target proteins and cells. FINDINGS: We demonstrated significantly enhanced brain exposure of therapeutic antibodies using optimal transferrin receptor or CD98 TEMs. We found that these modules also mediated efficient clearance of tau aggregates and HER2+ tumor cells via a non-classical phagocytosis mechanism through direct engagement of myeloid cells. This mode of clearance potentially avoids the known drawbacks of FcγR-mediated antibody mechanisms in the brain such as the neurotoxic release of proinflammatory cytokines and immune cell exhaustion. CONCLUSIONS: Our study reports a new brain delivery platform that harnesses receptor-mediated transcytosis to maximize brain uptake and uses a non-classical phagocytosis mechanism to efficiently clear pathologic proteins and cells. We believe these findings will transform therapeutic approaches to treat CNS diseases. FUNDING: This research was funded by Janssen, Pharmaceutical Companies of Johnson & Johnson.


Assuntos
Barreira Hematoencefálica , Transcitose , Barreira Hematoencefálica/metabolismo , Transcitose/fisiologia , Receptores da Transferrina , Transporte Biológico/fisiologia , Anticorpos
2.
Eur J Med Chem ; 236: 114330, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35436670

RESUMO

Pramlintide is an equipotent amylin analogue that reduces food intake and body weight in obese subjects and has been clinically approved as an adjunctive therapy for the treatment of adult diabetic patients. However, due to its extremely short half-life in vivo, a regimen of multiple daily administrations is required for achieving clinical effectiveness. Herein is described the development of prototypical long-acting pramlintide bioconjugates, in which pramlintide's disulfide-linked macrocycle was replaced by a cyclic thioether motif. This modification enabled stable chemical conjugation to a half-life extending antibody. In contrast to pramlintide (t1/2 < 0.75 h), bioconjugates 35 and 38 have terminal half-lives of ∼2 days in mice and attain significant exposure levels that are maintained up to 7 days. Single dose subcutaneous administration of 35 in lean mice, given 18-20 h prior to oral acetaminophen (AAP) administration, significantly reduced gastric emptying (as determined by plasma AAP levels). In a separate study, similar administration of 35 in fasted lean mice effected a reduction in food intake for up to 48 h. These data are consistent with durable amylinomimetic responses and provide the basis for further development of such long-acting amylinomimetic conjugates for the potential treatment of obesity and associated pathologies.


Assuntos
Agonistas dos Receptores da Amilina , Agonistas dos Receptores da Amilina/farmacologia , Agonistas dos Receptores da Amilina/uso terapêutico , Amiloide , Animais , Peso Corporal , Humanos , Hipoglicemiantes/uso terapêutico , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Camundongos , Obesidade/induzido quimicamente , Obesidade/tratamento farmacológico
3.
MAbs ; 12(1): 1794687, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32744157

RESUMO

The long circulating half-life and inherently bivalent architecture of IgGs provide an ideal vehicle for presenting otherwise short-lived G-protein-coupled receptor agonists in a format that enables avidity-driven enhancement of potency. Here, we describe the site-specific conjugation of a dual agonist peptide (an oxyntomodulin variant engineered for potency and in vivo stability) to the complementarity-determining regions (CDRs) of an immunologically silent IgG4. A cysteine-containing heavy chain CDR3 variant was identified that provided clean conjugation to a bromoacetylated peptide without interference from any of the endogenous mAb cysteine residues. The resulting mAb-peptide homodimer has high potency at both target receptors (glucagon receptor, GCGR, and glucagon-like peptide 1 receptor, GLP-1R) driven by an increase in receptor avidity provided by the spatially defined presentation of the peptides. Interestingly, the avidity effects are different at the two target receptors. A single dose of the long-acting peptide conjugate robustly inhibited food intake and decreased body weight in insulin resistant diet-induced obese mice, in addition to ameliorating glucose intolerance. Inhibition of food intake and decrease in body weight was also seen in overweight cynomolgus monkeys. The weight loss resulting from dosing with the bivalently conjugated dual agonist was significantly greater than for the monomeric analog, clearly demonstrating translation of the measured in vitro avidity to in vivo pharmacology.


Assuntos
Anticorpos Monoclonais , Ingestão de Alimentos/efeitos dos fármacos , Obesidade , Oxintomodulina , Peptídeos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/farmacologia , Cisteína/química , Células HEK293 , Humanos , Macaca fascicularis , Masculino , Camundongos , Obesidade/sangue , Obesidade/tratamento farmacológico , Oxintomodulina/química , Oxintomodulina/farmacocinética , Oxintomodulina/farmacologia , Peptídeos/química , Peptídeos/farmacocinética , Peptídeos/farmacologia
4.
Blood ; 135(15): 1232-1243, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32040549

RESUMO

T-cell-mediated approaches have shown promise in myeloma treatment. However, there are currently a limited number of specific myeloma antigens that can be targeted, and multiple myeloma (MM) remains an incurable disease. G-protein-coupled receptor class 5 member D (GPRC5D) is expressed in MM and smoldering MM patient plasma cells. Here, we demonstrate that GPRC5D protein is present on the surface of MM cells and describe JNJ-64407564, a GPRC5DxCD3 bispecific antibody that recruits CD3+ T cells to GPRC5D+ MM cells and induces killing of GPRC5D+ cells. In vitro, JNJ-64407564 induced specific cytotoxicity of GPRC5D+ cells with concomitant T-cell activation and also killed plasma cells in MM patient samples ex vivo. JNJ-64407564 can recruit T cells and induce tumor regression in GPRC5D+ MM murine models, which coincide with T-cell infiltration at the tumor site. This antibody is also able to induce cytotoxicity of patient primary MM cells from bone marrow, which is the natural site of this disease. GPRC5D is a promising surface antigen for MM immunotherapy, and JNJ-64407564 is currently being evaluated in a phase 1 clinical trial in patients with relapsed or refractory MM (NCT03399799).


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Mieloma Múltiplo/terapia , Receptores Acoplados a Proteínas G/imunologia , Linfócitos T/efeitos dos fármacos , Animais , Anticorpos Biespecíficos/imunologia , Antineoplásicos Imunológicos/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica/efeitos dos fármacos , Feminino , Humanos , Imunoterapia , Camundongos Endogâmicos BALB C , Mieloma Múltiplo/imunologia , Linfócitos T/imunologia
5.
Protein Sci ; 15(1): 182-9, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16322573

RESUMO

Despite the availability of numerous gene fusion systems, recombinant protein expression in Escherichia coli remains difficult. Establishing the best fusion partner for difficult-to-express proteins remains empirical. To determine which fusion tags are best suited for difficult-to-express proteins, a comparative analysis of the newly described SUMO fusion system with a variety of commonly used fusion systems was completed. For this study, three model proteins, enhanced green fluorescent protein (eGFP), matrix metalloprotease-13 (MMP13), and myostatin (growth differentiating factor-8, GDF8), were fused to the C termini of maltose-binding protein (MBP), glutathione S-transferase (GST), thioredoxin (TRX), NUS A, ubiquitin (Ub), and SUMO tags. These constructs were expressed in E. coli and evaluated for expression and solubility. As expected, the fusion tags varied in their ability to produce tractable quantities of soluble eGFP, MMP13, and GDF8. SUMO and NUS A fusions enhanced expression and solubility of recombinant proteins most dramatically. The ease at which SUMO and NUS A fusion tags were removed from their partner proteins was then determined. SUMO fusions are cleaved by the natural SUMO protease, while an AcTEV protease site had to be engineered between NUS A and its partner protein. A kinetic analysis showed that the SUMO and AcTEV proteases had similar KM values, but SUMO protease had a 25-fold higher kcat than AcTEV protease, indicating a more catalytically efficient enzyme. Taken together, these results demonstrate that SUMO is superior to commonly used fusion tags in enhancing expression and solubility with the distinction of generating recombinant protein with native sequences.


Assuntos
Clonagem Molecular/métodos , Fusão Gênica , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteína SUMO-1/biossíntese , Proteína SUMO-1/genética , Cisteína Endopeptidases/biossíntese , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Endopeptidases/biossíntese , Endopeptidases/química , Endopeptidases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas Recombinantes de Fusão/química , Proteína SUMO-1/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA