Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38979389

RESUMO

The Data Coordinating Center (DCC) of the Human Tumor Atlas Network (HTAN) has played a crucial role in enabling the broad sharing and effective utilization of HTAN data within the scientific community. Data from the first phase of HTAN are now available publicly. We describe the diverse datasets and modalities shared, multiple access routes to HTAN assay data and metadata, data standards, technical infrastructure and governance approaches, as well as our approach to sustained community engagement. HTAN data can be accessed via the HTAN Portal, explored in visualization tools-including CellxGene, Minerva, and cBioPortal-and analyzed in the cloud through the NCI Cancer Research Data Commons nodes. We have developed a streamlined infrastructure to ingest and disseminate data by leveraging the Synapse platform. Taken together, the HTAN DCC's approach demonstrates a successful model for coordinating, standardizing, and disseminating complex cancer research data via multiple resources in the cancer data ecosystem, offering valuable insights for similar consortia, and researchers looking to leverage HTAN data.

2.
ArXiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-37292481

RESUMO

Pediatric tumors of the central nervous system are the most common cause of cancer-related death in children. The five-year survival rate for high-grade gliomas in children is less than 20%. Due to their rarity, the diagnosis of these entities is often delayed, their treatment is mainly based on historic treatment concepts, and clinical trials require multi-institutional collaborations. The MICCAI Brain Tumor Segmentation (BraTS) Challenge is a landmark community benchmark event with a successful history of 12 years of resource creation for the segmentation and analysis of adult glioma. Here we present the CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge, which represents the first BraTS challenge focused on pediatric brain tumors with data acquired across multiple international consortia dedicated to pediatric neuro-oncology and clinical trials. The BraTS-PEDs 2023 challenge focuses on benchmarking the development of volumentric segmentation algorithms for pediatric brain glioma through standardized quantitative performance evaluation metrics utilized across the BraTS 2023 cluster of challenges. Models gaining knowledge from the BraTS-PEDs multi-parametric structural MRI (mpMRI) training data will be evaluated on separate validation and unseen test mpMRI dataof high-grade pediatric glioma. The CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge brings together clinicians and AI/imaging scientists to lead to faster development of automated segmentation techniques that could benefit clinical trials, and ultimately the care of children with brain tumors.

3.
ArXiv ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37608932

RESUMO

Automated brain tumor segmentation methods have become well-established and reached performance levels offering clear clinical utility. These methods typically rely on four input magnetic resonance imaging (MRI) modalities: T1-weighted images with and without contrast enhancement, T2-weighted images, and FLAIR images. However, some sequences are often missing in clinical practice due to time constraints or image artifacts, such as patient motion. Consequently, the ability to substitute missing modalities and gain segmentation performance is highly desirable and necessary for the broader adoption of these algorithms in the clinical routine. In this work, we present the establishment of the Brain MR Image Synthesis Benchmark (BraSyn) in conjunction with the Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2023. The primary objective of this challenge is to evaluate image synthesis methods that can realistically generate missing MRI modalities when multiple available images are provided. The ultimate aim is to facilitate automated brain tumor segmentation pipelines. The image dataset used in the benchmark is diverse and multi-modal, created through collaboration with various hospitals and research institutions.

4.
ArXiv ; 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37608937

RESUMO

Meningiomas are the most common primary intracranial tumor in adults and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on multiparametric MRI (mpMRI) for diagnosis, treatment planning, and longitudinal treatment monitoring; yet automated, objective, and quantitative tools for non-invasive assessment of meningiomas on mpMRI are lacking. The BraTS meningioma 2023 challenge will provide a community standard and benchmark for state-of-the-art automated intracranial meningioma segmentation models based on the largest expert annotated multilabel meningioma mpMRI dataset to date. Challenge competitors will develop automated segmentation models to predict three distinct meningioma sub-regions on MRI including enhancing tumor, non-enhancing tumor core, and surrounding nonenhancing T2/FLAIR hyperintensity. Models will be evaluated on separate validation and held-out test datasets using standardized metrics utilized across the BraTS 2023 series of challenges including the Dice similarity coefficient and Hausdorff distance. The models developed during the course of this challenge will aid in incorporation of automated meningioma MRI segmentation into clinical practice, which will ultimately improve care of patients with meningioma.

5.
ArXiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37396608

RESUMO

Gliomas are the most common type of primary brain tumors. Although gliomas are relatively rare, they are among the deadliest types of cancer, with a survival rate of less than 2 years after diagnosis. Gliomas are challenging to diagnose, hard to treat and inherently resistant to conventional therapy. Years of extensive research to improve diagnosis and treatment of gliomas have decreased mortality rates across the Global North, while chances of survival among individuals in low- and middle-income countries (LMICs) remain unchanged and are significantly worse in Sub-Saharan Africa (SSA) populations. Long-term survival with glioma is associated with the identification of appropriate pathological features on brain MRI and confirmation by histopathology. Since 2012, the Brain Tumor Segmentation (BraTS) Challenge have evaluated state-of-the-art machine learning methods to detect, characterize, and classify gliomas. However, it is unclear if the state-of-the-art methods can be widely implemented in SSA given the extensive use of lower-quality MRI technology, which produces poor image contrast and resolution and more importantly, the propensity for late presentation of disease at advanced stages as well as the unique characteristics of gliomas in SSA (i.e., suspected higher rates of gliomatosis cerebri). Thus, the BraTS-Africa Challenge provides a unique opportunity to include brain MRI glioma cases from SSA in global efforts through the BraTS Challenge to develop and evaluate computer-aided-diagnostic (CAD) methods for the detection and characterization of glioma in resource-limited settings, where the potential for CAD tools to transform healthcare are more likely.

6.
ArXiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37332562

RESUMO

Software is vital for the advancement of biology and medicine. Through analysis of usage and impact metrics of software, developers can help determine user and community engagement. These metrics can be used to justify additional funding, encourage additional use, and identify unanticipated use cases. Such analyses can help define improvement areas and assist with managing project resources. However, there are challenges associated with assessing usage and impact, many of which vary widely depending on the type of software being evaluated. These challenges involve issues of distorted, exaggerated, understated, or misleading metrics, as well as ethical and security concerns. More attention to the nuances, challenges, and considerations involved in capturing impact across the diverse spectrum of biological software is needed. Furthermore, some tools may be especially beneficial to a small audience, yet may not have comparatively compelling metrics of high usage. Although some principles are generally applicable, there is not a single perfect metric or approach to effectively evaluate a software tool's impact, as this depends on aspects unique to each tool, how it is used, and how one wishes to evaluate engagement. We propose more broadly applicable guidelines (such as infrastructure that supports the usage of software and the collection of metrics about usage), as well as strategies for various types of software and resources. We also highlight outstanding issues in the field regarding how communities measure or evaluate software impact. To gain a deeper understanding of the issues hindering software evaluations, as well as to determine what appears to be helpful, we performed a survey of participants involved with scientific software projects for the Informatics Technology for Cancer Research (ITCR) program funded by the National Cancer Institute (NCI). We also investigated software among this scientific community and others to assess how often infrastructure that supports such evaluations is implemented and how this impacts rates of papers describing usage of the software. We find that although developers recognize the utility of analyzing data related to the impact or usage of their software, they struggle to find the time or funding to support such analyses. We also find that infrastructure such as social media presence, more in-depth documentation, the presence of software health metrics, and clear information on how to contact developers seem to be associated with increased usage rates. Our findings can help scientific software developers make the most out of the evaluations of their software so that they can more fully benefit from such assessments.

7.
Database (Oxford) ; 20222022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35735230

RESUMO

Experimental tools and resources, such as animal models, cell lines, antibodies, genetic reagents and biobanks, are key ingredients in biomedical research. Investigators face multiple challenges when trying to understand the availability, applicability and accessibility of these tools. A major challenge is keeping up with current information about the numerous tools available for a particular research problem. A variety of disease-agnostic projects such as the Mouse Genome Informatics database and the Resource Identification Initiative curate a number of types of research tools. Here, we describe our efforts to build upon these resources to develop a disease-specific research tool resource for the neurofibromatosis (NF) research community. This resource, the NF Research Tools Database, is an open-access database that enables the exploration and discovery of information about NF type 1-relevant animal models, cell lines, antibodies, genetic reagents and biobanks. Users can search and explore tools, obtain detailed information about each tool as well as read and contribute their observations about the performance, reliability and characteristics of tools in the database. NF researchers will be able to use the NF Research Tools Database to promote, discover, share, reuse and characterize research tools, with the goal of advancing NF research. Database URL: https://tools.nf.synapse.org/.


Assuntos
Pesquisa Biomédica , Neurofibromatoses , Animais , Bases de Dados Factuais , Camundongos , Reprodutibilidade dos Testes
8.
F1000Res ; 9: 1028, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33214875

RESUMO

The Cancer Research Institute (CRI) iAtlas is an interactive web platform for data exploration and discovery in the context of tumors and their interactions with the immune microenvironment. iAtlas allows researchers to study immune response characterizations and patterns for individual tumor types, tumor subtypes, and immune subtypes. iAtlas supports computation and visualization of correlations and statistics among features related to the tumor microenvironment, cell composition, immune expression signatures, tumor mutation burden, cancer driver mutations, adaptive cell clonality, patient survival, expression of key immunomodulators, and tumor infiltrating lymphocyte (TIL) spatial maps. iAtlas was launched to accompany the release of the TCGA PanCancer Atlas and has since been expanded to include new capabilities such as (1) user-defined loading of sample cohorts, (2) a tool for classifying expression data into immune subtypes, and (3) integration of TIL mapping from digital pathology images. We expect that the CRI iAtlas will accelerate discovery and improve patient outcomes by providing researchers access to standardized immunogenomics data to better understand the tumor immune microenvironment and its impact on patient responses to immunotherapy.


Assuntos
Neoplasias , Academias e Institutos , Humanos , Imunoterapia , Linfócitos do Interstício Tumoral , Neoplasias/genética , Microambiente Tumoral
10.
Immunity ; 48(4): 812-830.e14, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29628290

RESUMO

We performed an extensive immunogenomic analysis of more than 10,000 tumors comprising 33 diverse cancer types by utilizing data compiled by TCGA. Across cancer types, we identified six immune subtypes-wound healing, IFN-γ dominant, inflammatory, lymphocyte depleted, immunologically quiet, and TGF-ß dominant-characterized by differences in macrophage or lymphocyte signatures, Th1:Th2 cell ratio, extent of intratumoral heterogeneity, aneuploidy, extent of neoantigen load, overall cell proliferation, expression of immunomodulatory genes, and prognosis. Specific driver mutations correlated with lower (CTNNB1, NRAS, or IDH1) or higher (BRAF, TP53, or CASP8) leukocyte levels across all cancers. Multiple control modalities of the intracellular and extracellular networks (transcription, microRNAs, copy number, and epigenetic processes) were involved in tumor-immune cell interactions, both across and within immune subtypes. Our immunogenomics pipeline to characterize these heterogeneous tumors and the resulting data are intended to serve as a resource for future targeted studies to further advance the field.


Assuntos
Genômica/métodos , Neoplasias , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Humanos , Interferon gama/genética , Interferon gama/imunologia , Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade , Neoplasias/classificação , Neoplasias/genética , Neoplasias/imunologia , Prognóstico , Equilíbrio Th1-Th2/fisiologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia , Cicatrização/genética , Cicatrização/imunologia , Adulto Jovem
11.
J Immunol ; 199(1): 323-335, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28566371

RESUMO

The significance of islet Ag-reactive T cells found in peripheral blood of type 1 diabetes (T1D) subjects is unclear, partly because similar cells are also found in healthy control (HC) subjects. We hypothesized that key disease-associated cells would show evidence of prior Ag exposure, inferred from expanded TCR clonotypes, and essential phenotypic properties in their transcriptomes. To test this, we developed single-cell RNA sequencing procedures for identifying TCR clonotypes and transcript phenotypes in individual T cells. We applied these procedures to analysis of islet Ag-reactive CD4+ memory T cells from the blood of T1D and HC individuals after activation with pooled immunodominant islet peptides. We found extensive TCR clonotype sharing in Ag-activated cells, especially from individual T1D subjects, consistent with in vivo T cell expansion during disease progression. The expanded clonotype from one T1D subject was detected at repeat visits spanning >15 mo, demonstrating clonotype stability. Notably, we found no clonotype sharing between subjects, indicating a predominance of "private" TCR specificities. Expanded clones from two T1D subjects recognized distinct IGRP peptides, implicating this molecule as a trigger for CD4+ T cell expansion. Although overall transcript profiles of cells from HC and T1D subjects were similar, profiles from the most expanded clones were distinctive. Our findings demonstrate that islet Ag-reactive CD4+ memory T cells with unique Ag specificities and phenotypes are expanded during disease progression and can be detected by single-cell analysis of peripheral blood.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Ilhotas Pancreáticas/imunologia , Ativação Linfocitária , Adulto , Células Clonais , Diabetes Mellitus Tipo 1/sangue , Feminino , Perfilação da Expressão Gênica , Humanos , Memória Imunológica , Masculino , Peptídeos/imunologia , Fenótipo , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Análise de Sequência de RNA , Análise de Célula Única
12.
Neuron ; 85(3): 519-33, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25619653

RESUMO

Anti-inflammatory strategies are proposed to have beneficial effects in Alzheimer's disease. To explore how anti-inflammatory cytokine signaling affects Aß pathology, we investigated the effects of adeno-associated virus (AAV2/1)-mediated expression of Interleukin (IL)-10 in the brains of APP transgenic mouse models. IL-10 expression resulted in increased Aß accumulation and impaired memory in APP mice. A focused transcriptome analysis revealed changes consistent with enhanced IL-10 signaling and increased ApoE expression in IL-10-expressing APP mice. ApoE protein was selectively increased in the plaque-associated insoluble cellular fraction, likely because of direct interaction with aggregated Aß in the IL-10-expressing APP mice. Ex vivo studies also show that IL-10 and ApoE can individually impair glial Aß phagocytosis. Our observations that IL-10 has an unexpected negative effect on Aß proteostasis and cognition in APP mouse models demonstrate the complex interplay between innate immunity and proteostasis in neurodegenerative diseases, an interaction we call immunoproteostasis.


Assuntos
Precursor de Proteína beta-Amiloide , Transtornos Cognitivos/metabolismo , Imunoproteínas/biossíntese , Interleucina-10/biossíntese , Placa Amiloide/metabolismo , Deficiências na Proteostase/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Animais Recém-Nascidos , Células Cultivadas , Transtornos Cognitivos/imunologia , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Placa Amiloide/imunologia , Deficiências na Proteostase/imunologia
13.
PLoS One ; 8(10): e76694, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24146911

RESUMO

Astrocytoma is the most common glioma, accounting for half of all primary brain and spinal cord tumors. Late detection and the aggressive nature of high-grade astrocytomas contribute to high mortality rates. Though many studies identify candidate biomarkers using high-throughput transcriptomic profiling to stratify grades and subtypes, few have resulted in clinically actionable results. This shortcoming can be attributed, in part, to pronounced lab effects that reduce signature robustness and varied individual gene expression among patients with the same tumor. We addressed these issues by uniformly preprocessing publicly available transcriptomic data, comprising 306 tumor samples from three astrocytoma grades (Grade 2, 3, and 4) and 30 non-tumor samples (normal brain as control tissues). Utilizing Differential Rank Conservation (DIRAC), a network-based classification approach, we examined the global and individual patterns of network regulation across tumor grades. Additionally, we applied gene-based approaches to identify genes whose expression changed consistently with increasing tumor grade and evaluated their robustness across multiple studies using statistical sampling. Applying DIRAC, we observed a global trend of greater network dysregulation with increasing tumor aggressiveness. Individual networks displaying greater differences in regulation between adjacent grades play well-known roles in calcium/PKC, EGF, and transcription signaling. Interestingly, many of the 90 individual genes found to monotonically increase or decrease with astrocytoma grade are implicated in cancer-affected processes such as calcium signaling, mitochondrial metabolism, and apoptosis. The fact that specific genes monotonically increase or decrease with increasing astrocytoma grade may reflect shared oncogenic mechanisms among phenotypically similar tumors. This work presents statistically significant results that enable better characterization of different human astrocytoma grades and hopefully can contribute towards improvements in diagnosis and therapy choices. Our results also identify a number of testable hypotheses relating to astrocytoma etiology that may prove helpful in developing much-needed biomarkers for earlier disease detection.


Assuntos
Astrocitoma/genética , Astrocitoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Perfilação da Expressão Gênica , Heterogeneidade Genética , Algoritmos , Carcinogênese/genética , Carcinogênese/patologia , Bases de Dados Genéticas , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Genes Neoplásicos , Humanos , Gradação de Tumores , Invasividade Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos
14.
BMC Syst Biol ; 6: 153, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23234303

RESUMO

BACKGROUND: Human tissues perform diverse metabolic functions. Mapping out these tissue-specific functions in genome-scale models will advance our understanding of the metabolic basis of various physiological and pathological processes. The global knowledgebase of metabolic functions categorized for the human genome (Human Recon 1) coupled with abundant high-throughput data now makes possible the reconstruction of tissue-specific metabolic models. However, the number of available tissue-specific models remains incomplete compared with the large diversity of human tissues. RESULTS: We developed a method called metabolic Context-specificity Assessed by Deterministic Reaction Evaluation (mCADRE). mCADRE is able to infer a tissue-specific network based on gene expression data and metabolic network topology, along with evaluation of functional capabilities during model building. mCADRE produces models with similar or better functionality and achieves dramatic computational speed up over existing methods. Using our method, we reconstructed draft genome-scale metabolic models for 126 human tissue and cell types. Among these, there are models for 26 tumor tissues along with their normal counterparts, and 30 different brain tissues. We performed pathway-level analyses of this large collection of tissue-specific models and identified the eicosanoid metabolic pathway, especially reactions catalyzing the production of leukotrienes from arachidnoic acid, as potential drug targets that selectively affect tumor tissues. CONCLUSIONS: This large collection of 126 genome-scale draft metabolic models provides a useful resource for studying the metabolic basis for a variety of human diseases across many tissues. The functionality of the resulting models and the fast computational speed of the mCADRE algorithm make it a useful tool to build and update tissue-specific metabolic models.


Assuntos
Genômica/métodos , Redes e Vias Metabólicas , Modelos Biológicos , Transcriptoma , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Especificidade de Órgãos , Fatores de Tempo
15.
Front Physiol ; 3: 404, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23112774

RESUMO

Dysfunction in energy metabolism-including in pathways localized to the mitochondria-has been implicated in the pathogenesis of a wide array of disorders, ranging from cancer to neurodegenerative diseases to type II diabetes. The inherent complexities of energy and mitochondrial metabolism present a significant obstacle in the effort to understand the role that these molecular processes play in the development of disease. To help unravel these complexities, systems biology methods have been applied to develop an array of computational metabolic models, ranging from mitochondria-specific processes to genome-scale cellular networks. These constraint-based (CB) models can efficiently simulate aspects of normal and aberrant metabolism in various genetic and environmental conditions. Development of these models leverages-and also provides a powerful means to integrate and interpret-information from a wide range of sources including genomics, proteomics, metabolomics, and enzyme kinetics. Here, we review a variety of mechanistic modeling studies that explore metabolic functions, deficiency disorders, and aberrant biochemical pathways in mitochondria and related regions in the cell.

16.
Zhonghua Zhong Liu Za Zhi ; 34(7): 497-500, 2012 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-22967466

RESUMO

OBJECTIVE: Our previous study shows that PURNE2 mRNA plays an important role in the differential diagnosis of leiomyosarcoma and gastrointestinal stromal tumor (GIST). Non-coding RNA PCA3 locates in the intron of PRUNE2 and may play a role in PRUNE2 expression. The aim of this study was to explore the expression of PCA3 mRNA and PRUNE2 in leiomyosarcoma and their correlation. METHODS: The expression of PRUNE2 mRNA was analyzed by agilent gene expression microarray CHIP in 31 leiomyosarcomas and 37 GISTs, and the correlation of the PRUNE2 expression and prognosis of leiomyosarcoma was predicted. Real-Time PCR assay was used to detect the mRNA levels of PCA3 and PRUNE2 in 13 leiomyosarcomas and to investigate their correlation. Seven prostate cancer tissues were used as control of PCA3. RESULTS: The level of PRUNE2 mRNA expression was significantly higher in the 31 leiomyosarcomas than that in the 37 GISTs, and the level of PRUNE2 mRNA expression was correlated with survival of the leiomyosarcoma patients. Compared with prostate cancer, the non-coding RNA PCA3 expression level was significantly lower in leiomyosarcoma, and it had no correlation with the prognosis of leiomyosarcoma. Most importantly, the PRUNE2 and PCA3 mRNA expressions were both upregulated in leiomyosarcoma and showed a significant positive correlation. CONCLUSIONS: Our findings demonstrate for the first time that PRUNE2 expression is correlated with the survival of leiomyosarcoma patients. Furthermore, non-coding RNA PCA3, which locates in the intron of PRUNE2, has a significant positive correlation with PRUNE2 and may play an important role in the pathogenesis of leiomyosarcoma.


Assuntos
Antígenos de Neoplasias/metabolismo , Leiomiossarcoma/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Retroperitoneais/metabolismo , Antígenos de Neoplasias/genética , Feminino , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/metabolismo , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/metabolismo , Humanos , Leiomiossarcoma/genética , Masculino , Proteínas de Neoplasias/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , RNA Mensageiro/metabolismo , RNA não Traduzido/metabolismo , Neoplasias Retroperitoneais/genética , Taxa de Sobrevida , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-20836040

RESUMO

Cancer is a complex disease that involves multiple types of biological interactions across diverse physical, temporal, and biological scales. This complexity presents substantial challenges for the characterization of cancer biology, and motivates the study of cancer in the context of molecular, cellular, and physiological systems. Computational models of cancer are being developed to aid both biological discovery and clinical medicine. The development of these in silico models is facilitated by rapidly advancing experimental and analytical tools that generate information-rich, high-throughput biological data. Statistical models of cancer at the genomic, transcriptomic, and pathway levels have proven effective in developing diagnostic and prognostic molecular signatures, as well as in identifying perturbed pathways. Statistically inferred network models can prove useful in settings where data overfitting can be avoided, and provide an important means for biological discovery. Mechanistically based signaling and metabolic models that apply a priori knowledge of biochemical processes derived from experiments can also be reconstructed where data are available, and can provide insight and predictive ability regarding the behavior of these systems. At longer length scales, continuum and agent-based models of the tumor microenvironment and other tissue-level interactions enable modeling of cancer cell populations and tumor progression. Even though cancer has been among the most-studied human diseases using systems approaches, significant challenges remain before the enormous potential of in silico cancer biology can be fully realized.


Assuntos
Biologia Computacional/métodos , Modelos Biológicos , Neoplasias , Animais , Simulação por Computador , Humanos , Modelos Estatísticos
18.
Mol Cell Proteomics ; 9(11): 2405-13, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20651304

RESUMO

Leiomyosarcoma is one of the most common mesenchymal tumors. Proteomics profiling analysis by reverse-phase protein lysate array surprisingly revealed that expression of the epithelial marker E-cadherin (encoded by CDH1) was significantly elevated in a subset of leiomyosarcomas. In contrast, E-cadherin was rarely expressed in the gastrointestinal stromal tumors, another major mesenchymal tumor type. We further sought to 1) validate this finding, 2) determine whether there is a mesenchymal to epithelial reverting transition (MErT) in leiomyosarcoma, and if so 3) elucidate the regulatory mechanism responsible for this MErT. Our data showed that the epithelial cell markers E-cadherin, epithelial membrane antigen, cytokeratin AE1/AE3, and pan-cytokeratin were often detected immunohistochemically in leiomyosarcoma tumor cells on tissue microarray. Interestingly, the E-cadherin protein expression was correlated with better survival in leiomyosarcoma patients. Whole genome microarray was used for transcriptomics analysis, and the epithelial gene expression signature was also associated with better survival. Bioinformatics analysis of transcriptome data showed an inverse correlation between E-cadherin and E-cadherin repressor Slug (SNAI2) expression in leiomyosarcoma, and this inverse correlation was validated on tissue microarray by immunohistochemical staining of E-cadherin and Slug. Knockdown of Slug expression in SK-LMS-1 leiomyosarcoma cells by siRNA significantly increased E-cadherin; decreased the mesenchymal markers vimentin and N-cadherin (encoded by CDH2); and significantly decreased cell proliferation, invasion, and migration. An increase in Slug expression by pCMV6-XL5-Slug transfection decreased E-cadherin and increased vimentin and N-cadherin. Thus, MErT, which is mediated through regulation of Slug, is a clinically significant phenotype in leiomyosarcoma.


Assuntos
Transição Epitelial-Mesenquimal , Genômica/métodos , Leiomiossarcoma , Proteômica/métodos , Fatores de Transcrição/metabolismo , Biomarcadores , Caderinas/genética , Caderinas/metabolismo , Movimento Celular , Proliferação de Células , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/metabolismo , Tumores do Estroma Gastrointestinal/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Leiomiossarcoma/genética , Leiomiossarcoma/metabolismo , Leiomiossarcoma/patologia , Análise em Microsséries , Fatores de Transcrição da Família Snail , Taxa de Sobrevida , Fatores de Transcrição/genética , Vimentina/metabolismo
19.
PLoS Comput Biol ; 6(5): e1000792, 2010 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-20523739

RESUMO

A powerful way to separate signal from noise in biology is to convert the molecular data from individual genes or proteins into an analysis of comparative biological network behaviors. One of the limitations of previous network analyses is that they do not take into account the combinatorial nature of gene interactions within the network. We report here a new technique, Differential Rank Conservation (DIRAC), which permits one to assess these combinatorial interactions to quantify various biological pathways or networks in a comparative sense, and to determine how they change in different individuals experiencing the same disease process. This approach is based on the relative expression values of participating genes-i.e., the ordering of expression within network profiles. DIRAC provides quantitative measures of how network rankings differ either among networks for a selected phenotype or among phenotypes for a selected network. We examined disease phenotypes including cancer subtypes and neurological disorders and identified networks that are tightly regulated, as defined by high conservation of transcript ordering. Interestingly, we observed a strong trend to looser network regulation in more malignant phenotypes and later stages of disease. At a sample level, DIRAC can detect a change in ranking between phenotypes for any selected network. Variably expressed networks represent statistically robust differences between disease states and serve as signatures for accurate molecular classification, validating the information about expression patterns captured by DIRAC. Importantly, DIRAC can be applied not only to transcriptomic data, but to any ordinal data type.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Análise por Conglomerados , Bases de Dados Factuais , Humanos , Neoplasias/genética , Fenótipo , Reprodutibilidade dos Testes , Transdução de Sinais
20.
Technol Cancer Res Treat ; 9(2): 149-59, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20218737

RESUMO

The enormous amount of biomolecule measurement data generated from high-throughput technologies has brought an increased need for computational tools in biological analyses. Such tools can enhance our understanding of human health and genetic diseases, such as cancer, by accurately classifying phenotypes, detecting the presence of disease, discriminating among cancer sub-types, predicting clinical outcomes, and characterizing disease progression. In the case of gene expression microarray data, standard statistical learning methods have been used to identify classifiers that can accurately distinguish disease phenotypes. However, these mathematical prediction rules are often highly complex, and they lack the convenience and simplicity desired for extracting underlying biological meaning or transitioning into the clinic. In this review, we survey a powerful collection of computational methods for analyzing transcriptomic microarray data that address these limitations. Relative Expression Analysis (RXA) is based only on the relative orderings among the expressions of a small number of genes. Specifically, we provide a description of the first and simplest example of RXA, the K-TSP classifier, which is based on _ pairs of genes; the case K = 1 is the TSP classifier. Given their simplicity and ease of biological interpretation, as well as their invariance to data normalization and parameter-fitting, these classifiers have been widely applied in aiding molecular diagnostics in a broad range of human cancers. We review several studies which demonstrate accurate classification of disease phenotypes (e.g., cancer vs. normal), cancer subclasses (e.g., AML vs. ALL, GIST vs. LMS), disease outcomes (e.g., metastasis, survival), and diverse human pathologies assayed through blood-borne leukocytes. The studies presented demonstrate that RXA-specifically the TSP and K-TSP classifiers-is a promising new class of computational methods for analyzing high-throughput data, and has the potential to significantly contribute to molecular cancer diagnosis and prognosis.


Assuntos
Perfilação da Expressão Gênica/métodos , Biologia Molecular/métodos , Neoplasias/diagnóstico , Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Algoritmos , Expressão Gênica , Humanos , Reconhecimento Automatizado de Padrão/métodos , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA