Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Kidney Int ; 105(6): 1263-1278, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38286178

RESUMO

Current classification of chronic kidney disease (CKD) into stages using indirect systemic measures (estimated glomerular filtration rate (eGFR) and albuminuria) is agnostic to the heterogeneity of underlying molecular processes in the kidney thereby limiting precision medicine approaches. To generate a novel CKD categorization that directly reflects within kidney disease drivers we analyzed publicly available transcriptomic data from kidney biopsy tissue. A Self-Organizing Maps unsupervised artificial neural network machine-learning algorithm was used to stratify a total of 369 patients with CKD and 46 living kidney donors as healthy controls. Unbiased stratification of the discovery cohort resulted in identification of four novel molecular categories of disease termed CKD-Blue, CKD-Gold, CKD-Olive, CKD-Plum that were replicated in independent CKD and diabetic kidney disease datasets and can be further tested on any external data at kidneyclass.org. Each molecular category spanned across CKD stages and histopathological diagnoses and represented transcriptional activation of distinct biological pathways. Disease progression rates were highly significantly different between the molecular categories. CKD-Gold displayed rapid progression, with significant eGFR-adjusted Cox regression hazard ratio of 5.6 [1.01-31.3] for kidney failure and hazard ratio of 4.7 [1.3-16.5] for composite of kidney failure or a 40% or more eGFR decline. Urine proteomics revealed distinct patterns between the molecular categories, and a 25-protein signature was identified to distinguish CKD-Gold from other molecular categories. Thus, patient stratification based on kidney tissue omics offers a gateway to non-invasive biomarker-driven categorization and the potential for future clinical implementation, as a key step towards precision medicine in CKD.


Assuntos
Progressão da Doença , Taxa de Filtração Glomerular , Rim , Medicina de Precisão , Insuficiência Renal Crônica , Transcriptoma , Humanos , Medicina de Precisão/métodos , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/urina , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/fisiopatologia , Pessoa de Meia-Idade , Feminino , Masculino , Rim/patologia , Rim/fisiopatologia , Idoso , Biópsia , Adulto , Redes Neurais de Computação , Estudos de Casos e Controles , Perfilação da Expressão Gênica , Aprendizado de Máquina não Supervisionado
2.
Nat Commun ; 15(1): 743, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272907

RESUMO

Chronic kidney disease (CKD) is a public health problem driven by myofibroblast accumulation, leading to interstitial fibrosis. Heterogeneity is a recently recognized characteristic in kidney fibroblasts in CKD, but the role of different populations is still unclear. Here, we characterize a proinflammatory fibroblast population (named CXCL-iFibro), which corresponds to an early state of myofibroblast differentiation in CKD. We demonstrate that CXCL-iFibro co-localize with macrophages in the kidney and participate in their attraction, accumulation, and switch into FOLR2+ macrophages from early CKD stages on. In vitro, macrophages promote the switch of CXCL-iFibro into ECM-secreting myofibroblasts through a WNT/ß-catenin-dependent pathway, thereby suggesting a reciprocal crosstalk between these populations of fibroblasts and macrophages. Finally, the detection of CXCL-iFibro at early stages of CKD is predictive of poor patient prognosis, which shows that the CXCL-iFibro population is an early player in CKD progression and demonstrates the clinical relevance of our findings.


Assuntos
Receptor 2 de Folato , Insuficiência Renal Crônica , Humanos , Rim/patologia , Insuficiência Renal Crônica/patologia , Fibroblastos/metabolismo , Miofibroblastos/metabolismo , Fibrose , Macrófagos/metabolismo , Receptor 2 de Folato/metabolismo
3.
Kidney Int ; 105(2): 218-230, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245210

RESUMO

Glomerular diseases are classified using a descriptive taxonomy that is not reflective of the heterogeneous underlying molecular drivers. This limits not only diagnostic and therapeutic patient management, but also impacts clinical trials evaluating targeted interventions. The Nephrotic Syndrome Study Network (NEPTUNE) is poised to address these challenges. The study has enrolled >850 pediatric and adult patients with proteinuric glomerular diseases who have contributed to deep clinical, histologic, genetic, and molecular profiles linked to long-term outcomes. The NEPTUNE Knowledge Network, comprising combined, multiscalar data sets, captures each participant's molecular disease processes at the time of kidney biopsy. In this editorial, we describe the design and implementation of NEPTUNE Match, which bridges a basic science discovery pipeline with targeted clinical trials. Noninvasive biomarkers have been developed for real-time pathway analyses. A Molecular Nephrology Board reviews the pathway maps together with clinical, laboratory, and histopathologic data assembled for each patient to compile a Match report that estimates the fit between the specific molecular disease pathway(s) identified in an individual patient and proposed clinical trials. The NEPTUNE Match report is communicated using established protocols to the patient and the attending nephrologist for use in their selection of available clinical trials. NEPTUNE Match represents the first application of precision medicine in nephrology with the aim of developing targeted therapies and providing the right medication for each patient with primary glomerular disease.


Assuntos
Nefropatias , Síndrome Nefrótica , Adulto , Criança , Humanos , Biomarcadores , Ensaios Clínicos como Assunto , Glomérulos Renais/patologia , Síndrome Nefrótica/diagnóstico , Síndrome Nefrótica/genética , Síndrome Nefrótica/terapia
4.
Nat Commun ; 14(1): 4903, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580326

RESUMO

Kidney organoids are a promising model to study kidney disease, but their use is constrained by limited knowledge of their functional protein expression profile. Here, we define the organoid proteome and transcriptome trajectories over culture duration and upon exposure to TNFα, a cytokine stressor. Older organoids increase deposition of extracellular matrix but decrease expression of glomerular proteins. Single cell transcriptome integration reveals that most proteome changes localize to podocytes, tubular and stromal cells. TNFα treatment of organoids results in 322 differentially expressed proteins, including cytokines and complement components. Transcript expression of these 322 proteins is significantly higher in individuals with poorer clinical outcomes in proteinuric kidney disease. Key TNFα-associated protein (C3 and VCAM1) expression is increased in both human tubular and organoid kidney cell populations, highlighting the potential for organoids to advance biomarker development. By integrating kidney organoid omic layers, incorporating a disease-relevant cytokine stressor and comparing with human data, we provide crucial evidence for the functional relevance of the kidney organoid model to human kidney disease.


Assuntos
Nefropatias , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Proteoma/metabolismo , Rim , Nefropatias/genética , Nefropatias/metabolismo , Organoides/metabolismo
5.
Kidney Int ; 103(3): 565-579, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36442540

RESUMO

The diagnosis of nephrotic syndrome relies on clinical presentation and descriptive patterns of injury on kidney biopsies, but not specific to underlying pathobiology. Consequently, there are variable rates of progression and response to therapy within diagnoses. Here, an unbiased transcriptomic-driven approach was used to identify molecular pathways which are shared by subgroups of patients with either minimal change disease (MCD) or focal segmental glomerulosclerosis (FSGS). Kidney tissue transcriptomic profile-based clustering identified three patient subgroups with shared molecular signatures across independent, North American, European, and African cohorts. One subgroup had significantly greater disease progression (Hazard Ratio 5.2) which persisted after adjusting for diagnosis and clinical measures (Hazard Ratio 3.8). Inclusion in this subgroup was retained even when clustering was limited to those with less than 25% interstitial fibrosis. The molecular profile of this subgroup was largely consistent with tumor necrosis factor (TNF) pathway activation. Two TNF pathway urine markers were identified, tissue inhibitor of metalloproteinases-1 (TIMP-1) and monocyte chemoattractant protein-1 (MCP-1), that could be used to predict an individual's TNF pathway activation score. Kidney organoids and single-nucleus RNA-sequencing of participant kidney biopsies, validated TNF-dependent increases in pathway activation score, transcript and protein levels of TIMP-1 and MCP-1, in resident kidney cells. Thus, molecular profiling identified a subgroup of patients with either MCD or FSGS who shared kidney TNF pathway activation and poor outcomes. A clinical trial testing targeted therapies in patients selected using urinary markers of TNF pathway activation is ongoing.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefrologia , Nefrose Lipoide , Síndrome Nefrótica , Humanos , Glomerulosclerose Segmentar e Focal/patologia , Nefrose Lipoide/diagnóstico , Inibidor Tecidual de Metaloproteinase-1 , Síndrome Nefrótica/diagnóstico , Fatores de Necrose Tumoral/uso terapêutico
6.
Kidney Int Rep ; 7(2): 289-304, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35155868

RESUMO

INTRODUCTION: Individuals with focal segmental glomerular sclerosis (FSGS) typically undergo kidney biopsy only once, which limits the ability to characterize kidney cell gene expression over time. METHODS: We used single-cell RNA sequencing (scRNA-seq) to explore disease-related molecular signatures in urine cells from subjects with FSGS. We collected 17 urine samples from 12 FSGS subjects and captured these as 23 urine cell samples. The inflammatory signatures from renal epithelial and immune cells were evaluated in bulk gene expression data sets of FSGS and minimal change disease (MCD) (The Nephrotic Syndrome Study Network [NEPTUNE] study) and an immune single-cell data set from lupus nephritis (Accelerating Medicines Partnership). RESULTS: We identified immune cells, predominantly monocytes, and renal epithelial cells in the urine. Further analysis revealed 2 monocyte subtypes consistent with M1 and M2 monocytes. Shed podocytes in the urine had high expression of marker genes for epithelial-to-mesenchymal transition (EMT). We selected the 16 most highly expressed genes from urine immune cells and 10 most highly expressed EMT genes from urine podocytes as immune signatures and EMT signatures, respectively. Using kidney biopsy transcriptomic data from NEPTUNE, we found that urine cell immune signature and EMT signature genes were more highly expressed in FSGS biopsies compared with MCD biopsies. CONCLUSION: The identification of monocyte subsets and podocyte expression signatures in the urine samples of subjects with FSGS suggests that urine cell profiling might serve as a diagnostic and prognostic tool in nephrotic syndrome. Furthermore, this approach may aid in the development of novel biomarkers and identifying personalized therapies targeting particular molecular pathways in immune cells and podocytes.

7.
Am J Kidney Dis ; 79(6): 807-819.e1, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34864148

RESUMO

RATIONALE & OBJECTIVE: The current classification system for focal segmental glomerulosclerosis (FSGS) and minimal change disease (MCD) does not fully capture the complex structural changes in kidney biopsies nor the clinical and molecular heterogeneity of these diseases. STUDY DESIGN: Prospective observational cohort study. SETTING & PARTICIPANTS: 221 MCD and FSGS patients enrolled in the Nephrotic Syndrome Study Network (NEPTUNE). EXPOSURE: The NEPTUNE Digital Pathology Scoring System (NDPSS) was applied to generate scores for 37 glomerular descriptors. OUTCOME: Time from biopsy to complete proteinuria remission, time from biopsy to kidney disease progression (40% estimated glomerular filtration rate [eGFR] decline or kidney failure), and eGFR over time. ANALYTICAL APPROACH: Cluster analysis was used to group patients with similar morphologic characteristics. Glomerular descriptors and patient clusters were assessed for associations with outcomes using adjusted Cox models and linear mixed models. Messenger RNA from glomerular tissue was used to assess differentially expressed genes between clusters and identify genes associated with individual descriptors driving cluster membership. RESULTS: Three clusters were identified: X (n = 56), Y (n = 68), and Z (n = 97). Clusters Y and Z had higher probabilities of proteinuria remission (HRs of 1.95 [95% CI, 0.99-3.85] and 3.29 [95% CI, 1.52-7.13], respectively), lower hazards of disease progression (HRs of 0.22 [95% CI, 0.08-0.57] and 0.11 [95% CI, 0.03-0.45], respectively), and lower loss of eGFR over time compared with X. Cluster X had 1,920 genes that were differentially expressed compared with Y+Z; these reflected activation of pathways of immune response and inflammation. Six descriptors driving the clusters individually correlated with clinical outcomes and gene expression. LIMITATIONS: Low prevalence of some descriptors and biopsy at a single time point. CONCLUSIONS: The NDPSS allows for categorization of FSGS/MCD patients into clinically and biologically relevant subgroups, and uncovers histologic parameters associated with clinical outcomes and molecular signatures not included in current classification systems.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefropatias , Nefrose Lipoide , Síndrome Nefrótica , Progressão da Doença , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Nefropatias/complicações , Nefrose Lipoide/patologia , Síndrome Nefrótica/patologia , Prognóstico , Estudos Prospectivos , Proteinúria/patologia , Transcriptoma
8.
Glomerular Dis ; 1(2): 45-59, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34337593

RESUMO

INTRODUCTIONS: Kidney injury molecule-1 (KIM-1) and periostin (POSTN) are proximal and distal tubule injury biomarkers. We tested whether baseline urine KIM-1/creatinine (uKIM-1/cr) and/or uPOSTN/cr correlated with disease severity or improved a remission prediction model. METHODS: Baseline uKIM1/cr and uPOSTN/cr were measured on spot urine samples from immunosuppression-free patients enrolled in Nephrotic Syndrome Study Network until December 15, 2014. Urine protein/creatinine (UPCR) and albumin/creatinine (UACR) were measured at baseline, 4 months, and until last follow-up. Glomerular and tubulointerstitial (TI) expression arrays were analyzed from a baseline research renal biopsy core collected during a clinically indicated biopsy.Renal diagnoses were centrally confirmed, sections scanned, and measured morphometrically. Correlations between baseline uKIM-1/cr and uPOSTN/cr and UPCR, UACR, histopathologic features, glomerular and TI KIM-1 and POSTN expression levels, and renal outcomes were assessed. RESULTS: Baseline uKIM-1/cr correlated with UPCR and UACR, and were associated with complete remission after adjustment for proteinuria, histopathologic diagnosis, and treatment. Baseline uKIM-1/cr also correlated with degree of foot process effacement and acute tubular injury. Glomerular and TI KIM-1 expression levels correlated with UPCR and UACR. Higher TI KIM-1 expression levels correlated with interstitial fibrosis, tubular atrophy, and global glomerulosclerosis, while glomerular KIM-1 expression correlated with time to remission. Findings for POSTN were of lesser statistical strength. DISCUSSION/CONCLUSION: Lower baseline uKIM-1/cr values were associated with more rapid time to complete remission after adjusting for proteinuria, histopathologic diagnosis, and treatment. Increased TI KIM-1 expression levels in proteinuric states were associated with chronic morphological injury; lower glomerular expression levels were associated with a greater potential for proteinuria reversibility.

9.
Nat Rev Nephrol ; 16(11): 657-668, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32424281

RESUMO

Chronic kidney diseases (CKDs) are currently classified according to their clinical features, associated comorbidities and pattern of injury on biopsy. Even within a given classification, considerable variation exists in disease presentation, progression and response to therapy, highlighting heterogeneity in the underlying biological mechanisms. As a result, patients and clinicians experience uncertainty when considering optimal treatment approaches and risk projection. Technological advances now enable large-scale datasets, including DNA and RNA sequence data, proteomics and metabolomics data, to be captured from individuals and groups of patients along the genotype-phenotype continuum of CKD. The ability to combine these high-dimensional datasets, in which the number of variables exceeds the number of clinical outcome observations, using computational approaches such as machine learning, provides an opportunity to re-classify patients into molecularly defined subgroups that better reflect underlying disease mechanisms. Patients with CKD are uniquely poised to benefit from these integrative, multi-omics approaches since the kidney biopsy, blood and urine samples used to generate these different types of molecular data are frequently obtained during routine clinical care. The ultimate goal of developing an integrated molecular classification is to improve diagnostic classification, risk stratification and assignment of molecular, disease-specific therapies to improve the care of patients with CKD.


Assuntos
Medicina de Precisão , Insuficiência Renal Crônica/classificação , Insuficiência Renal Crônica/genética , Genômica/métodos , Genótipo , Humanos , Metabolômica/métodos , Fenótipo , Prognóstico , Proteômica/métodos , Insuficiência Renal Crônica/terapia
10.
Clin J Am Soc Nephrol ; 15(7): 973-982, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32354727

RESUMO

BACKGROUND AND OBJECTIVES: IgA nephropathy is the most common primary glomerular disease in the world. Marked by mesangial inflammation and proliferation, it generally leads to progressive kidney fibrosis. As the Janus kinase signal transducer and activator of transcription pathway has been implicated as an important mediator of diabetic kidney disease and FSGS, detailed investigation of this pathway in IgA nephropathy was undertaken to establish the basis for targeting this pathway across glomerular diseases. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Well characterized patients with IgA nephropathy and controls were studied, allowing us to compare 77 patients with biopsy-proven IgA nephropathy with 45 healthy subjects. STAT phosphorylation was assessed in peripheral blood monocytes (PBMCs) by phosphoflow before and after cytokine stimulation. Kidney Janus kinase signal transducer and activator of transcription activity was studied by immunofluorescence and by transcriptomic studies. An STAT1 activity score was established using downstream transcriptional targets of pSTAT1 and associated with disease and clinical outcomes. RESULTS: We found PBMCs to have upregulated pSTAT production at baseline in patients with IgA nephropathy with a limited reserve to respond to cytokine stimulation compared with controls. Increased staining in glomerular mesangium and endothelium was seen for Jak-2 and pSTAT1 and in the tubulointerstitial for JAK2, pSTAT1, and pSTAT3. Activation of the Janus kinase signal transducer and activator of transcription pathway was further supported by increased pSTAT1 and pSTAT3 scores in glomerular and tubulointerstitial sections of the kidney (glomerular activation Z scores: 7.1 and 4.5, respectively; P values: <0.001 and <0.001, respectively). Clinically, phosphoflow results associated with proteinuria and kidney function, and STAT1 activation associated with proteinuria but was not associated with progression. CONCLUSIONS: Janus kinase signal transducer and activator of transcription signaling was activated in patients with IgA nephropathy compared with controls. There were altered responses in peripheral immune cells and increased message and activated proteins in the kidney. These changes variably related to proteinuria and kidney function.


Assuntos
Glomerulonefrite por IGA/genética , Glomerulonefrite por IGA/metabolismo , Janus Quinase 2/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Adulto , Linfócitos T CD4-Positivos/metabolismo , Estudos de Casos e Controles , Endotélio/metabolismo , Feminino , Perfilação da Expressão Gênica , Mesângio Glomerular/metabolismo , Glomerulonefrite por IGA/sangue , Glomerulonefrite por IGA/patologia , Humanos , Interferon gama/genética , Janus Quinase 1/genética , Janus Quinase 2/sangue , Túbulos Renais/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Fosforilação , Fator de Transcrição STAT1/sangue , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT3/sangue , Transdução de Sinais/genética , Adulto Jovem
11.
Kidney Int Rep ; 5(4): 414-425, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32280839

RESUMO

INTRODUCTION: Childhood-onset nephrotic syndrome has a variable clinical course. Improved predictive markers of long-term outcomes in children with nephrotic syndrome are needed. This study tests the association between baseline urinary epidermal growth factor (uEGF) excretion and longitudinal kidney function in children with nephrotic syndrome. METHODS: The study evaluated 191 participants younger than 18 years enrolled in the Nephrotic Syndrome Study Network, including 118 with their first clinically indicated kidney biopsy (68 minimal change disease; 50 focal segmental glomerulosclerosis) and 73 with incident nephrotic syndrome without a biopsy. uEGF was measured at baseline for all participants and normalized by the urine creatinine (Cr) concentration. Renal epidermal growth factor (EGF) mRNA was measured in the tubular compartment microdissected from kidney biopsy cores from a subset of patients. Linear mixed models were used to test if baseline uEGF/Cr and EGF mRNA expression were associated with change in estimated glomerular filtration rate (eGFR) over time. RESULTS: Higher uEGF/Cr at baseline was associated with slower eGFR decline during follow-up (median follow-up = 30 months). Halving of uEGF/Cr was associated with a decrease in eGFR slope of 2.0 ml/min per 1.73 m2 per year (P < 0.001) adjusted for age, race, diagnosis, baseline eGFR and proteinuria, and APOL1 genotype. In the biopsied subgroup, uEGF/Cr was correlated with EGF mRNA expression (r = 0.74; P < 0.001), but uEGF/Cr was retained over mRNA expression as the stronger predictor of eGFR slope after multivariable adjustment (decrease in eGFR slope of 1.7 ml/min per 1.73 m2 per year per log2 decrease in uEGF/Cr; P < 0.001). CONCLUSION: uEGF/Cr may be a useful noninvasive biomarker that can assist in predicting the long-term course of kidney function in children with incident nephrotic syndrome.

12.
J Am Soc Nephrol ; 31(3): 544-559, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32047005

RESUMO

BACKGROUND: Understanding podocyte-specific responses to injury at a systems level is difficult because injury leads to podocyte loss or an increase of extracellular matrix, altering glomerular cellular composition. Finding a window into early podocyte injury might help identify molecular pathways involved in the podocyte stress response. METHODS: We developed an approach to apply proteome analysis to very small samples of purified podocyte fractions. To examine podocytes in early disease states in FSGS mouse models, we used podocyte fractions isolated from individual mice after chemical induction of glomerular disease (with Doxorubicin or LPS). We also applied single-glomerular proteome analysis to tissue from patients with FSGS. RESULTS: Transcriptome and proteome analysis of glomeruli from patients with FSGS revealed an underrepresentation of podocyte-specific genes and proteins in late-stage disease. Proteome analysis of purified podocyte fractions from FSGS mouse models showed an early stress response that includes perturbations of metabolic, mechanical, and proteostasis proteins. Additional analysis revealed a high correlation between the amount of proteinuria and expression levels of the mechanosensor protein Filamin-B. Increased expression of Filamin-B in podocytes in biopsy samples from patients with FSGS, in single glomeruli from proteinuric rats, and in podocytes undergoing mechanical stress suggests that this protein has a role in detrimental stress responses. In Drosophila, nephrocytes with reduced filamin homolog Cher displayed altered filtration capacity, but exhibited no change in slit diaphragm structure. CONCLUSIONS: We identified conserved mechanisms of the podocyte stress response through ultrasensitive proteome analysis of human glomerular FSGS tissue and purified native mouse podocytes during early disease stages. This approach enables systematic comparisons of large-scale proteomics data and phenotype-to-protein correlation.


Assuntos
Filaminas/genética , Regulação da Expressão Gênica , Glomerulosclerose Segmentar e Focal/patologia , Proteômica/métodos , Estresse Fisiológico/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Glomerulosclerose Segmentar e Focal/genética , Humanos , Camundongos , Podócitos/metabolismo , Proteinúria/genética , Proteinúria/fisiopatologia , Distribuição Aleatória , Ratos
13.
JCI Insight ; 5(6)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32107344

RESUMO

To define cellular mechanisms underlying kidney function and failure, the KPMP analyzes biopsy tissue in a multicenter research network to build cell-level process maps of the kidney. This study aimed to establish a single cell RNA sequencing strategy to use cell-level transcriptional profiles from kidney biopsies in KPMP to define molecular subtypes in glomerular diseases. Using multiple sources of adult human kidney reference tissue samples, 22,268 single cell profiles passed KPMP quality control parameters. Unbiased clustering resulted in 31 distinct cell clusters that were linked to kidney and immune cell types using specific cell markers. Focusing on endothelial cell phenotypes, in silico and in situ hybridization methods assigned 3 discrete endothelial cell clusters to distinct renal vascular beds. Transcripts defining glomerular endothelial cells (GEC) were evaluated in biopsies from patients with 10 different glomerular diseases in the NEPTUNE and European Renal cDNA Bank (ERCB) cohort studies. Highest GEC scores were observed in patients with focal segmental glomerulosclerosis (FSGS). Molecular endothelial signatures suggested 2 distinct FSGS patient subgroups with α-2 macroglobulin (A2M) as a key downstream mediator of the endothelial cell phenotype. Finally, glomerular A2M transcript levels associated with lower proteinuria remission rates, linking endothelial function with long-term outcome in FSGS.


Assuntos
Células Endoteliais/patologia , Perfilação da Expressão Gênica/métodos , Glomerulosclerose Segmentar e Focal/patologia , Biomarcadores/análise , Humanos
14.
PLoS One ; 14(10): e0222948, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31581251

RESUMO

Focal segmental glomerulosclerosis (FSGS) accounts for about 40% of all nephrotic syndrome cases in adults. The presence of several potential circulating factors has been suggested in patients with primary FSGS and particularly in patients with recurrent disease after transplant. Irrespectively of the nature of the circulating factors, this study was aimed at identifying early glomerular/podocyte-specific pathways that are activated by the sera of patients affected by FSGS. Kidney biopsies were obtained from patients undergoing kidney transplantation due to primary FSGS. Donor kidneys were biopsied pre-reperfusion (PreR) and a subset 1-2 hours after reperfusion of the kidney (PostR). Thirty-one post reperfusion (PostR) and 36 PreR biopsy samples were analyzed by microarray and gene enrichment KEGG pathway analysis. Data were compared to those obtained from patients with incident primary FSGS enrolled in other cohorts as well as with another cohort to correct for pathways activated by ischemia reperfusion. Using an ex-vivo cell-based assay in which human podocytes were cultured in the presence of sera from patients with recurrent and non recurrent FSGS, the molecular signature of podocytes exposed to sera from patients with REC was compared to the one established from patients with NON REC. We demonstrate that inflammatory pathways, including the TNF pathway, are primarily activated immediately after exposure to the sera of patients with primary FSGS, while phagocytotic pathways are activated when proteinuria becomes clinically evident. The TNF pathway activation by one or more circulating factors present in the sera of patients with FSGS supports prior experimental findings from our group demonstrating a causative role of local TNF in podocyte injury in FSGS. Correlation analysis with clinical and histological parameters of disease was performed and further supported a possible role for TNF pathway activation in FSGS. Additionally, we identified a unique set of genes that is specifically activated in podocytes when cultured in the presence of serum of patients with REC FSGS. This clinical translational study supports our prior experimental findings describing a potential role of the TNF pathway in the pathogenesis of FSGS. Validation of these findings in larger cohorts may lay the ground for the implementation of integrated system biology approaches to risk stratify patients affected by FSGS and to identify novel pathways relevant to podocyte injury.


Assuntos
Regulação da Expressão Gênica , Glomerulosclerose Segmentar e Focal/sangue , Glomerulosclerose Segmentar e Focal/genética , Glomérulos Renais/metabolismo , Podócitos/metabolismo , Transdução de Sinais , Adulto , Biomarcadores/sangue , Biópsia , Estudos de Coortes , Feminino , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Inflamação/genética , Inflamação/patologia , Glomérulos Renais/patologia , Masculino , Podócitos/patologia , Proteinúria/sangue , Recidiva , Fatores de Risco , Transdução de Sinais/genética , Resultado do Tratamento
15.
Cell Syst ; 8(5): 380-394.e4, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121115

RESUMO

Most gene expression datasets generated by individual researchers are too small to fully benefit from unsupervised machine-learning methods. In the case of rare diseases, there may be too few cases available, even when multiple studies are combined. To address this challenge, we utilize transfer learning to extract coordinated expression patterns and use learned patterns to analyze small rare disease datasets. We trained a pathway-level information extractor (PLIER) model on a large public data compendium comprising multiple experiments, tissues, and biological conditions and then transferred the model to small datasets in an approach we call MultiPLIER. Models constructed from the public data compendium included features that aligned well to known biological factors and were more comprehensive than those constructed from individual datasets or conditions. When transferred to rare disease datasets, the models describe biological processes related to disease severity more effectively than models trained only on a given dataset.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Doenças Raras/genética , Humanos , Aprendizado de Máquina , Transcriptoma/genética , Aprendizado de Máquina não Supervisionado
16.
Kidney Int ; 94(6): 1151-1159, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30301568

RESUMO

Studies suggest that altered renal lipid metabolism plays a role in the pathogenesis of diabetic kidney disease and that genetic or pharmacological induction of cholesterol efflux protects from the development of diabetic kidney disease and focal segmental glomerulosclerosis (FSGS). Here we tested whether altered lipid metabolism contributes to renal failure in the Col4a3 knockout mouse model for Alport Syndrome. There was an eight-fold increase in the cholesterol content in renal cortexes of mice with Alport Syndrome. This was associated with increased glomerular lipid droplets and cholesterol crystals. Treatment of mice with Alport Syndrome with hydroxypropyl-ß-cyclodextrin (HPßCD) reduced cholesterol content in the kidneys of mice with Alport Syndrome and protected from the development of albuminuria, renal failure, inflammation and tubulointerstitial fibrosis. Cholesterol efflux and trafficking-related genes were primarily affected in mice with Alport Syndrome and were differentially regulated in the kidney cortex and isolated glomeruli. HPßCD also protected from proteinuria and mesangial expansion in a second model of non-metabolic kidney disease, adriamycin-induced nephropathy. Consistent with our experimental findings, microarray analysis confirmed dysregulation of several lipid-related genes in glomeruli isolated from kidney biopsies of patients with primary FSGS enrolled in the NEPTUNE study. Thus, lipid dysmetabolism occurs in non-metabolic glomerular disorders such as Alport Syndrome and FSGS, and HPßCD improves renal function in experimental Alport Syndrome and FSGS.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Glomérulos Renais/patologia , Nefrite Hereditária/tratamento farmacológico , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Animais , Autoantígenos/genética , Biópsia , Colesterol/metabolismo , Colágeno Tipo IV/genética , Doxorrubicina/toxicidade , Feminino , Glomerulosclerose Segmentar e Focal/induzido quimicamente , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Nefrite Hereditária/genética , Nefrite Hereditária/metabolismo , Nefrite Hereditária/patologia , Estudos Observacionais como Assunto
17.
Kidney Int ; 94(4): 795-808, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30093081

RESUMO

Focal segmental glomerular sclerosis (FSGS) is a devastating disease with limited treatment options and poor prognosis. Activated JAK-STAT signaling has been implicated in other kidney diseases. Since new technologies allow us to better evaluate changes in systemic and renal JAK-STAT activity as it relates to kidney function, we examined this in 106 patients with biopsy-proven FSGS compared to 47 healthy control individuals. Peripheral immune function was assessed in peripheral blood mononuclear cells by phosphoflow studies before and after cytokine stimulation. Kidney JAK-STAT activity was measured by immunofluorescence and by transcriptomics. A STAT1 activity score was calculated by evaluating message status of downstream targets of pSTAT 1. Peripheral blood mononuclear cells were found to be upregulated in terms of pSTAT production at baseline in FSGS and to have limited reserve to respond to various cytokines. Increased staining for components of the JAK-STAT system in FSGS by microscopy was found. Furthermore, we found transcriptomic evidence for activation of JAK-STAT that increased pSTAT 1 and pSTAT 3 in glomerular and tubulointerstitial sections of the kidney. Some of these changes were associated with the likelihood of remission of proteinuria and progression of disease. JAK-STAT signaling is altered in patients with FSGS as compared to healthy controls with activated peripheral immune cells, increased message in the kidney and increased activated proteins in the kidney. Thus, our findings support immune activation in this disease and point to the JAK-STAT pathway as a potential target for treatment of FSGS.


Assuntos
Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/metabolismo , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Glomerulosclerose Segmentar e Focal/sangue , Glomerulosclerose Segmentar e Focal/imunologia , Humanos , Janus Quinase 1/sangue , Janus Quinase 1/genética , Janus Quinase 2/sangue , Janus Quinase 2/genética , Glomérulos Renais/metabolismo , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade , Fosforilação , Fator de Transcrição STAT1/sangue , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT3/sangue , Transdução de Sinais , Transcriptoma , Adulto Jovem
18.
Ann Rheum Dis ; 77(9): 1339-1344, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29724728

RESUMO

INTRODUCTION: The current study aimed to investigate the association between urinary epidermal growth factor (uEGF) and renal disease severity and outcomes in patients with antineutrophil cytoplasmic antibody-associated vasculitis (AAV). METHODS: Intrarenal EGFmRNA expression was extracted from transcriptomic data of microdissected tubulointerstitial compartments of kidney biopsies of patients with AAV. uEGF was measured in 173 patients with AAV in active stage and 143 in remission, and normalised to urine creatinine excretion (uEGF/Cr). The association between uEGF/Cr (or EGFmRNA) and clinical-pathological parameters was tested using linear regression analysis. The ability of uEGF/Cr to predict renal outcomes was analysed using Cox's regression analysis. RESULTS: In patients with AAV, intrarenal EGFmRNA expression was significantly associated with estimated glomerular filtration rate (eGFR)(log2) at time of biopsy (ß=0.63, p<0.001). The level of uEGF/Cr was significantly higher in patients in remission than in patients with active disease, both when looking at patients with sequential measurements (2.75±1.03vs 2.08±0.98, p<0.001) and in cross-sectional comparison. uEGF/Cr level was positively associated with eGFR(log2) at time of sampling in both active and remission stage (ß=0.60, p<0.001; ß=0.74, p<0.001, respectively). Patients with resistant renal disease had significantly lower uEGF/Cr levels than responders (1.65±1.22vs 2.16±1.26, p=0.04). Moreover, after adjusting for other potential predictors, uEGF/Cr was independently associated with composite endpoint of end-stage renal disease or 30% reduction of eGFR (HR 0.61, 95% CI 0.45 to 0.83, p=0.001). CONCLUSION: Lower uEGF/Cr levels are associated with more severe renal disease, renal resistance to treatment and higher risk of progression to composite outcome in patients with AAV.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/complicações , Fator de Crescimento Epidérmico/urina , Nefropatias/diagnóstico , Nefropatias/etiologia , Adulto , Idoso , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/tratamento farmacológico , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/urina , Biomarcadores/urina , Creatinina/urina , Progressão da Doença , Fator de Crescimento Epidérmico/biossíntese , Fator de Crescimento Epidérmico/genética , Feminino , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Taxa de Filtração Glomerular , Humanos , Imunossupressores/uso terapêutico , Rim/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/urina , Masculino , Pessoa de Meia-Idade , Prognóstico , RNA Mensageiro/genética , Indução de Remissão , Índice de Gravidade de Doença
19.
Ann Rheum Dis ; 77(8): 1226-1233, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29724730

RESUMO

OBJECTIVES: To characterise renal tissue metabolic pathway gene expression in different forms of glomerulonephritis. METHODS: Patients with nephrotic syndrome (NS), antineutrophil cytoplasmic antibody-associated vasculitis (AAV), systemic lupus erythematosus (SLE) and healthy living donors (LD) were studied. Clinically indicated renal biopsies were obtained at time of diagnosis and microdissected into glomerular and tubulointerstitial compartments. Microarray-derived differential gene expression of 88 genes representing critical enzymes of metabolic pathways and 25 genes related to immune cell markers was compared between disease groups. Correlation analyses measured relationships between metabolic pathways, kidney function and cytokine production. RESULTS: Reduced steady state levels of mRNA species were enriched in pathways of oxidative phosphorylation and increased in the pentose phosphate pathway (PPP) with maximal perturbation in AAV and SLE followed by NS, and least in LD. Transcript regulation was isozymes specific with robust regulation in hexokinases, enolases and glucose transporters. Intercorrelation networks were observed between enzymes of the PPP (eg, transketolase) and macrophage markers (eg, CD68) (r=0.49, p<0.01). Increased PPP transcript levels were associated with reduced glomerular filtration rate in the glomerular (r=-0.49, p<0.01) and tubulointerstitial (r=-0.41, p<0.01) compartments. PPP expression and tumour necrosis factor activation were tightly co-expressed (r=0.70, p<0.01). CONCLUSION: This study demonstrated concordant alterations of the renal transcriptome consistent with metabolic reprogramming across different forms of glomerulonephritis. Activation of the PPP was tightly linked with intrarenal macrophage marker expression, reduced kidney function and increased production of cytokines. Modulation of glucose metabolism may offer novel immune-modulatory therapeutic approaches in rare kidney diseases.


Assuntos
Glomerulonefrite/metabolismo , Redes e Vias Metabólicas/genética , Adulto , Idoso , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/genética , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/metabolismo , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/patologia , Biópsia , Citocinas/biossíntese , Feminino , Regulação da Expressão Gênica , Glomerulonefrite/genética , Glomerulonefrite/patologia , Humanos , Isoenzimas/metabolismo , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Masculino , Redes e Vias Metabólicas/imunologia , Pessoa de Meia-Idade , Síndrome Nefrótica/genética , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/patologia , Via de Pentose Fosfato/genética , RNA Mensageiro/genética , Transcriptoma , Adulto Jovem
20.
Cell Rep ; 19(8): 1723-1738, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28538188

RESUMO

The MALAT1 (Metastasis-Associated Lung Adenocarcinoma Transcript 1) gene encodes a noncoding RNA that is processed into a long nuclear retained transcript (MALAT1) and a small cytoplasmic tRNA-like transcript (mascRNA). Using an RNA sequence- and structure-based covariance model, we identified more than 130 genomic loci in vertebrate genomes containing the MALAT1 3' end triple-helix structure and its immediate downstream tRNA-like structure, including 44 in the green lizard Anolis carolinensis. Structural and computational analyses revealed a co-occurrence of components of the 3' end module. MALAT1-like genes in Anolis carolinensis are highly expressed in adult testis, thus we named them testis-abundant long noncoding RNAs (tancRNAs). MALAT1-like loci also produce multiple small RNA species, including PIWI-interacting RNAs (piRNAs), from the antisense strand. The 3' ends of tancRNAs serve as potential targets for the PIWI-piRNA complex. Thus, we have identified an evolutionarily conserved class of long noncoding RNAs (lncRNAs) with similar structural constraints, post-transcriptional processing, and subcellular localization and a distinct function in spermatocytes.


Assuntos
Loci Gênicos , Genoma Humano , RNA Longo não Codificante/genética , Animais , Sequência de Bases , Núcleo Celular/metabolismo , Humanos , Lagartos/genética , Masculino , Conformação de Ácido Nucleico , Especificidade de Órgãos/genética , RNA Longo não Codificante/química , RNA Interferente Pequeno/genética , Espermatócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA