RESUMO
Every year, millions of brain magnetic resonance imaging (MRI) scans are acquired in hospitals across the world. These have the potential to revolutionize our understanding of many neurological diseases, but their morphometric analysis has not yet been possible due to their anisotropic resolution. We present an artificial intelligence technique, "SynthSR," that takes clinical brain MRI scans with any MR contrast (T1, T2, etc.), orientation (axial/coronal/sagittal), and resolution and turns them into high-resolution T1 scans that are usable by virtually all existing human neuroimaging tools. We present results on segmentation, registration, and atlasing of >10,000 scans of controls and patients with brain tumors, strokes, and Alzheimer's disease. SynthSR yields morphometric results that are very highly correlated with what one would have obtained with high-resolution T1 scans. SynthSR allows sample sizes that have the potential to overcome the power limitations of prospective research studies and shed new light on the healthy and diseased human brain.
Assuntos
Inteligência Artificial , Neuroimagem , Humanos , Estudos Prospectivos , Neuroimagem/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodosRESUMO
The neuropathology associated with cognitive decline in military personnel exposed to traumatic brain injury (TBI) and chronic stress is incompletely understood. Few studies have examined clinicopathologic correlations between phosphorylated-tau neurofibrillary tangles, ß-amyloid neuritic plaques, neuroinflammation, or white matter (WM) lesions, and neuropsychiatric disorders in veterans. We describe clinicopathologic findings in 4 military veterans with early-onset dementia (EOD) who had varying histories of blunt- and blast-TBI, cognitive decline, behavioral abnormalities, post-traumatic stress disorder, suicidal ideation, and suicide. We found that pathologic lesions in these military-EOD cases could not be categorized as classic Alzheimer's disease (AD), chronic traumatic encephalopathy, traumatic axonal injury, or other well-characterized clinicopathologic entities. Rather, we observed a mixture of polypathology with unusual patterns compared with pathologies found in AD or other dementias. Also, ultrahigh resolution ex vivo MRI in 2 of these 4 brains revealed unusual patterns of periventricular WM injury. These findings suggest that military-EOD cases are associated with atypical combinations of brain lesions and distribution rarely seen in nonmilitary populations. Future prospective studies that acquire neuropsychiatric data before and after deployments, as well as genetic and environmental exposure data, are needed to further elucidate clinicopathologic correlations in military-EOD.
Assuntos
Encéfalo/patologia , Demência/patologia , Idade de Início , Idoso , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Demência/complicações , Humanos , Glicoproteínas de Membrana , Pessoa de Meia-Idade , Placa Amiloide/complicações , Placa Amiloide/patologia , Receptores de Interleucina-1 , VeteranosRESUMO
Systemic hemangiomatosis is extremely rare in adolescents and adults. The authors describe a 37-year-old man with a history of hepatic, splenic, cerebral, and multiple recurring osseous hemangiomas since age 14. After a 9-year period without disease progression, the patient presented with an acute bilateral lower extremity myelopathy. This was secondary to a T11 vertebral hemangioma that compressed the spinal cord. A 2-week course of radiation therapy failed to alleviate the patient's symptoms. Successful T11 vertebrectomy was then performed to decompress the spinal cord. The many organs and serially involved bones may represent a distinct variant of hemangiomatosis not previously described in the literature.