Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Immunol ; 43(7): 1506-1518, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37322095

RESUMO

Following the COVID-19 pandemic, novel vaccines have successfully reduced severe disease and death. Despite eliciting lower antibody responses, adenoviral vector vaccines are nearly as effective as mRNA vaccines. Therefore, protection against severe disease may be mediated by immune memory cells. We here evaluated plasma antibody and memory B cells (Bmem) targeting the SARS-CoV-2 Spike receptor-binding domain (RBD) elicited by the adenoviral vector vaccine ChAdOx1 (AstraZeneca), their capacity to bind Omicron subvariants, and compared this to the response to mRNA BNT162b2 (Pfizer-BioNTech) vaccination. Whole blood was sampled from 31 healthy adults pre-vaccination and 4 weeks after dose one and dose two of ChAdOx1. Neutralizing antibodies (NAb) against SARS-CoV-2 were quantified at each time point. Recombinant RBDs of the Wuhan-Hu-1 (WH1), Delta, BA.2, and BA.5 variants were produced for ELISA-based quantification of plasma IgG and incorporated separately into fluorescent tetramers for flow cytometric identification of RBD-specific Bmem. NAb and RBD-specific IgG levels were over eight times lower following ChAdOx1 vaccination than BNT162b2. In ChAdOx1-vaccinated individuals, median plasma IgG recognition of BA.2 and BA.5 as a proportion of WH1-specific IgG was 26% and 17%, respectively. All donors generated resting RBD-specific Bmem, which were boosted after the second dose of ChAdOx1 and were similar in number to those produced by BNT162b2. The second dose of ChAdOx1 boosted Bmem that recognized VoC, and 37% and 39% of WH1-specific Bmem recognized BA.2 and BA.5, respectively. These data uncover mechanisms by which ChAdOx1 elicits immune memory to confer effective protection against severe COVID-19.


Assuntos
Vacina BNT162 , COVID-19 , Adulto , Humanos , Células B de Memória , Pandemias , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Adenoviridae , Anticorpos Neutralizantes , Imunoglobulina G , Anticorpos Antivirais
2.
Biochem Soc Trans ; 50(6): 1643-1658, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36421662

RESUMO

Natural infection with SARS-CoV-2 induces a robust circulating memory B cell (Bmem) population, which remains stable in number at least 8 months post-infection despite the contraction of antibody levels after 1 month. Multiple vaccines have been developed to combat the virus. These include two new formulations, mRNA and adenoviral vector vaccines, which have varying efficacy rates, potentially related to their distinct capacities to induce humoral immune responses. The mRNA vaccines BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) elicit significantly higher serum IgG and neutralizing antibody levels than the adenoviral vector ChAdOx1 (AstraZeneca) and Ad26.COV2.S (Janssen) vaccines. However, all vaccines induce Spike- and RBD-specific Bmem, which are vital in providing long-lasting protection in the form of rapid recall responses to subsequent infections. Past and current SARS-CoV-2 variants of concern (VoC) have shown the capacity to escape antibody neutralization to varying degrees. A booster dose with an mRNA vaccine following primary vaccination restores antibody levels and improves the capacity of these antibodies and Bmem to bind viral variants, including the current VoC Omicron. Future experimental research will be essential to evaluate the durability of protection against VoC provided by each vaccine and to identify immune markers of protection to enable prognostication of people who are at risk of severe complications from COVID-19.


Assuntos
COVID-19 , Imunidade Humoral , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Ad26COVS1 , Vacina BNT162 , Células B de Memória , Vacinação , Anticorpos Neutralizantes
3.
Blood ; 136(23): 2638-2655, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-32603431

RESUMO

Biallelic mutations in the genes encoding CD27 or its ligand CD70 underlie inborn errors of immunity (IEIs) characterized predominantly by Epstein-Barr virus (EBV)-associated immune dysregulation, such as chronic viremia, severe infectious mononucleosis, hemophagocytic lymphohistiocytosis (HLH), lymphoproliferation, and malignancy. A comprehensive understanding of the natural history, immune characteristics, and transplant outcomes has remained elusive. Here, in a multi-institutional global collaboration, we collected the clinical information of 49 patients from 29 families (CD27, n = 33; CD70, n = 16), including 24 previously unreported individuals and identified a total of 16 distinct mutations in CD27, and 8 in CD70, respectively. The majority of patients (90%) were EBV+ at diagnosis, but only ∼30% presented with infectious mononucleosis. Lymphoproliferation and lymphoma were the main clinical manifestations (70% and 43%, respectively), and 9 of the CD27-deficient patients developed HLH. Twenty-one patients (43%) developed autoinflammatory features including uveitis, arthritis, and periodic fever. Detailed immunological characterization revealed aberrant generation of memory B and T cells, including a paucity of EBV-specific T cells, and impaired effector function of CD8+ T cells, thereby providing mechanistic insight into cellular defects underpinning the clinical features of disrupted CD27/CD70 signaling. Nineteen patients underwent allogeneic hematopoietic stem cell transplantation (HSCT) prior to adulthood predominantly because of lymphoma, with 95% survival without disease recurrence. Our data highlight the marked predisposition to lymphoma of both CD27- and CD70-deficient patients. The excellent outcome after HSCT supports the timely implementation of this treatment modality particularly in patients presenting with malignant transformation to lymphoma.


Assuntos
Ligante CD27/deficiência , Doenças Genéticas Inatas , Transplante de Células-Tronco Hematopoéticas , Síndromes de Imunodeficiência , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/deficiência , Adolescente , Adulto , Aloenxertos , Criança , Pré-Escolar , Intervalo Livre de Doença , Feminino , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/imunologia , Doenças Genéticas Inatas/mortalidade , Doenças Genéticas Inatas/terapia , Humanos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/mortalidade , Síndromes de Imunodeficiência/terapia , Lactente , Masculino , Estudos Retrospectivos , Taxa de Sobrevida
4.
ChemMedChem ; 15(9): 799-807, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32162475

RESUMO

A click-chemistry-based approach was implemented to prepare peptidomimetics designed in silico and made from aromatic azides and a propargylated GIGI-mimicking platform derived from the altered Melan-A/MART-126(27L)-35 antigenic peptide ELAGIGILTV. The CuI -catalyzed Huisgen cycloaddition was carried out on solid support to generate rapidly a first series of peptidomimetics, which were evaluated for their capacity to dock at the interface between the major histocompatibility complex class-I (MHC-I) human leucocyte antigen (HLA)-A2 and T-cell receptors (TCRs). Despite being a weak HLA-A2 ligand, one of these 11 first synthetic compounds bearing a p-nitrobenzyl-triazole side chain was recognized by the receptor proteins of Melan-A/MART-1-specific T-cells. After modification of the N and C termini of this agonist, which was intended to enhance HLA-A2 binding, one of the resulting seven additional compounds triggered significant T-cell responses. Thus, these results highlight the capacity of naturally circulating human TCRs that are specific for the native Melan-A/MART-126-35 peptide to cross-react with peptidomimetics bearing organic motifs structurally different from the native central amino acids.


Assuntos
Haptenos/química , Antígeno MART-1/química , Oligopeptídeos/síntese química , Química Click , Antígeno HLA-A2/imunologia , Haptenos/imunologia , Humanos , Antígeno MART-1/imunologia , Estrutura Molecular , Oligopeptídeos/química , Oligopeptídeos/imunologia , Peptidomiméticos , Receptores de Antígenos de Linfócitos T/imunologia
5.
J Clin Immunol ; 40(2): 299-309, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31865525

RESUMO

Variants in MAGT1 have been identified as the cause of an immune deficiency termed X-linked immunodeficiency with magnesium defect, Epstein-Barr virus (EBV) infection and neoplasia (XMEN) disease. Here, we describe 2 cases of XMEN disease due to novel mutations in MAGT1, one of whom presented with classical features of XMEN disease and another who presented with a novel phenotype including probable CNS vasculitis, HHV-8 negative multicentric Castelman disease and severe molluscum contagiosum, thus highlighting the clinical diversity that may be seen in this condition. Peripheral blood immunophenotyping of these 2 patients, together with an additional 4 XMEN patients, revealed reduced NKG2D expression, impaired CD28 expression on CD8+ T cells, CD4+ T cell lymphopenia, an inverted CD4:CD8 ratio and decreased memory B cells. In addition, we showed for the first time alterations to the CD8+ T cell memory compartment, reduced CD56hi NK cells, MAIT and iNKT cells, as well as compromised differentiation of naïve CD4+ T cells into IL-21-producing Tfh-type cells in vitro. Both patients were treated with supplemental magnesium with limited benefit. However, one patient has undergone allogeneic haematopoietic stem cell transplant, with full donor chimerism and immune reconstitution. These results expand our understanding of the clinical and immunological phenotype in XMEN disease, adding to the current literature, which we further discuss here.


Assuntos
Proteínas de Transporte de Cátions/genética , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/fisiologia , Leucócitos Mononucleares/imunologia , Neoplasias/genética , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genética , Adulto , Diferenciação Celular , Criança , Quimerismo , Infecções por Vírus Epstein-Barr/imunologia , Transplante de Células-Tronco Hematopoéticas , Humanos , Memória Imunológica , Imunofenotipagem , Linfopenia , Magnésio/metabolismo , Masculino , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Neoplasias/imunologia , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/imunologia
6.
Front Immunol ; 10: 2593, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803177

RESUMO

Background: Patients with predominantly antibody deficiency (PAD) suffer from severe and recurrent infections that require lifelong immunoglobulin replacement and prophylactic antibiotic treatment. Disease incidence is estimated to be 1:25,000 worldwide, and up to 68% of patients develop non-infectious complications (NIC) including autoimmunity, which are difficult to treat, causing high morbidity, and early mortality. Currently, the etiology of NIC is unknown, and there are no diagnostic and prognostic markers to identify patients at risk. Objectives: To identify immune cell markers that associate with NIC in PAD patients. Methods: We developed a standardized 11-color flow cytometry panel that was utilized for in-depth analysis of B and T cells in 62 adult PAD patients and 59 age-matched controls. Results: Nine males had mutations in Bruton's tyrosine kinase (BTK) and were defined as having X-linked agammaglobulinemia. The remaining 53 patients were not genetically defined and were clinically diagnosed with agammaglobulinemia (n = 1), common variable immunodeficiency (CVID) (n = 32), hypogammaglobulinemia (n = 13), IgG subclass deficiency (n = 1), and specific polysaccharide antibody deficiency (n = 6). Of the 53, 30 (57%) had one or more NICs, 24 patients had reduced B-cell numbers, and 17 had reduced T-cell numbers. Both PAD-NIC and PAD+NIC groups had significantly reduced Ig class-switched memory B cells and naive CD4 and CD8 T-cell numbers. Naive and IgM memory B cells, Treg, Th17, and Tfh17 cells were specifically reduced in the PAD+NIC group. CD21lo B cells and Tfh cells were increased in frequencies, but not in absolute numbers in PAD+NIC. Conclusion: The previously reported increased frequencies of CD21lo B cells and Tfh cells are the indirect result of reduced naive B-cell and T-cell numbers. Hence, correct interpretation of immunophenotyping of immunodeficiencies is critically dependent on absolute cell counts. Finally, the defects in naive B- and T-cell numbers suggest a mild combined immunodeficiency in PAD patients with NIC. Together with the reductions in Th17, Treg, and Tfh17 numbers, these key differences could be utilized as biomarkers to support definitive diagnosis and to predict for disease progression.


Assuntos
Agamaglobulinemia/diagnóstico , Agamaglobulinemia/etiologia , Subpopulações de Linfócitos B/imunologia , Contagem de Linfócitos , Subpopulações de Linfócitos T/imunologia , Adolescente , Adulto , Agamaglobulinemia/metabolismo , Idoso , Idoso de 80 Anos ou mais , Subpopulações de Linfócitos B/metabolismo , Biomarcadores , Feminino , Humanos , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Memória Imunológica , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Adulto Jovem
7.
J Allergy Clin Immunol ; 143(1): 276-291.e6, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29800648

RESUMO

BACKGROUND: Germline gain-of function (GOF) mutations in PIK3CD, encoding the catalytic p110δ subunit of phosphoinositide 3-kinase (PI3K), result in hyperactivation of the PI3K-AKT-mechanistic target of rapamycin pathway and underlie a novel inborn error of immunity. Affected subjects exhibit perturbed humoral and cellular immunity, manifesting as recurrent infections, autoimmunity, hepatosplenomegaly, uncontrolled EBV and/or cytomegalovirus infection, and increased incidence of B-cell lymphoproliferation, lymphoma, or both. Mechanisms underlying disease pathogenesis remain unknown. OBJECTIVE: Understanding the cellular and molecular mechanisms underpinning inefficient surveillance of EBV-infected B cells is required to understand disease in patients with PIK3CD GOF mutations, identify key molecules required for cell-mediated immunity against EBV, and develop immunotherapeutic interventions for the treatment of this and other EBV-opathies. METHODS: We studied the consequences of PIK3CD GOF mutations on the generation, differentiation, and function of CD8+ T cells and natural killer (NK) cells, which are implicated in host defense against infection with herpesviruses, including EBV. RESULTS: PIK3CD GOF total and EBV-specific CD8+ T cells were skewed toward an effector phenotype, with exaggerated expression of markers associated with premature immunosenescence/exhaustion and increased susceptibility to reactivation-induced cell death. These findings were recapitulated in a novel mouse model of PI3K GOF mutations. NK cells in patients with PIK3CD GOF mutations also exhibited perturbed expression of differentiation-associated molecules. Both CD8+ T and NK cells had reduced capacity to kill EBV-infected B cells. PIK3CD GOF B cells had increased expression of CD48, programmed death ligand 1/2, and CD70. CONCLUSIONS: PIK3CD GOF mutations aberrantly induce exhaustion, senescence, or both and impair cytotoxicity of CD8+ T and NK cells. These defects might contribute to clinical features of affected subjects, such as impaired immunity to herpesviruses and tumor surveillance.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Classe I de Fosfatidilinositol 3-Quinases , Infecções por Vírus Epstein-Barr , Mutação com Ganho de Função , Doenças Genéticas Inatas/imunologia , Herpesvirus Humano 4/imunologia , Células Matadoras Naturais/imunologia , Adolescente , Adulto , Idoso , Linfócitos B/imunologia , Linfócitos T CD8-Positivos/patologia , Diferenciação Celular/genética , Senescência Celular/genética , Senescência Celular/imunologia , Criança , Pré-Escolar , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/imunologia , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/patologia , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Humanos , Vigilância Imunológica/genética , Células Matadoras Naturais/patologia , Masculino , Pessoa de Meia-Idade
8.
J Exp Med ; 214(2): 269-283, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28108590

RESUMO

The mammalian immune system has evolved over many millennia to be best equipped to protect the host from pathogen infection. In many cases, host and pathogen have coevolved, each acquiring sophisticated ways of inducing or protecting from disease. Epstein-Barr virus (EBV) is a human herpes virus that infects >90% of individuals. Despite its ubiquity, infection by EBV is often subclinical; this invariably reflects the necessity of the virus to preserve its host, balanced with sophisticated host immune mechanisms that maintain viral latency. However, EBV infection can result in various, and often fatal, clinical sequelae, including fulminant infectious mononucleosis, hemophagocytic lymphohistiocytosis, lymphoproliferative disease, organomegaly, and/or malignancy. Such clinical outcomes are typically observed in immunosuppressed individuals, with the most extreme cases being Mendelian primary immunodeficiencies (PIDs). Although these conditions are rare, they have provided critical insight into the cellular, biochemical, and molecular requirements for robust and long-lasting immunity against EBV infection. Here, we review the virology of EBV, mechanisms underlying disease pathogenesis in PIDs, and developments in immune cell-mediated therapy to treat disorders associated with or induced by EBV infection.


Assuntos
Herpesvirus Humano 4/imunologia , Imunidade Adaptativa , Animais , Ligante CD27/fisiologia , Linfócitos T CD4-Positivos/imunologia , Humanos , Síndromes de Imunodeficiência/etiologia , Imunoterapia Adotiva , Células Matadoras Naturais/imunologia , Transtornos Linfoproliferativos/genética , Transdução de Sinais , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/fisiologia
9.
J Exp Med ; 214(1): 91-106, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011864

RESUMO

In this study, we describe four patients from two unrelated families of different ethnicities with a primary immunodeficiency, predominantly manifesting as susceptibility to Epstein-Barr virus (EBV)-related diseases. Three patients presented with EBV-associated Hodgkin's lymphoma and hypogammaglobulinemia; one also had severe varicella infection. The fourth had viral encephalitis during infancy. Homozygous frameshift or in-frame deletions in CD70 in these patients abolished either CD70 surface expression or binding to its cognate receptor CD27. Blood lymphocyte numbers were normal, but the proportions of memory B cells and EBV-specific effector memory CD8+ T cells were reduced. Furthermore, although T cell proliferation was normal, in vitro-generated EBV-specific cytotoxic T cell activity was reduced because of CD70 deficiency. This reflected impaired activation by, rather than effects during killing of, EBV-transformed B cells. Notably, expression of 2B4 and NKG2D, receptors implicated in controlling EBV infection, on memory CD8+ T cells from CD70-deficient individuals was reduced, consistent with their impaired killing of EBV-infected cells. Thus, autosomal recessive CD70 deficiency is a novel cause of combined immunodeficiency and EBV-associated diseases, reminiscent of inherited CD27 deficiency. Overall, human CD70-CD27 interactions therefore play a nonredundant role in T and B cell-mediated immunity, especially for protection against EBV and humoral immunity.


Assuntos
Linfócitos B/imunologia , Ligante CD27/deficiência , Infecções por Vírus Epstein-Barr/complicações , Doença de Hodgkin/etiologia , Síndromes de Imunodeficiência/complicações , Adolescente , Adulto , Ligante CD27/genética , Linfócitos T CD8-Positivos/imunologia , Criança , Citotoxicidade Imunológica , Feminino , Herpesvirus Humano 4/imunologia , Humanos , Memória Imunológica , Masculino , Mutação , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/fisiologia
10.
Immunol Cell Biol ; 92(2): 181-90, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24296812

RESUMO

The role of CD4(+) T cells in the control of infectious pathogens is highly complex with a myriad of functions but how these T cells acquire differential functional potentiality remains poorly defined. Here we show that human cytomegalovirus (CMV)-specific CD4(+) T cells directed towards different viral antigens expressed predominantly TNF-α alone or TNF-α and IFN-γ. TNF-α(+) and IFN-γ(+) CD4(+) T cells expressed significantly higher levels of T-box transcription factors T-bet with graded loss of Eomesodermin (Eomes) expression (T-bet(Hi)Eomes(Hi/Lo)) when compared with TNF-α(+) CD4(+) T cells expressing lower levels of both T-bet and Eomes (T-bet(-)Eomes(-)). Furthermore, TNF-α(+) and IFN-γ(+) CD4(+) T cells expressed significantly higher levels of perforin and interleukin (IL)-2 and displayed a terminally differentiated phenotype (CCR7(-)CD27(-)CD45RA(-)CD57(+)CD62L(-)). In contrast, TNF-α(+) alone CMV-specific CD4(+) T cells were predominantly early-memory phenotype with a proportion of these cells displaying T memory stem-cell phenotype (CD95(+)CD45RA(+)CCR7(+)CD27(+)). In vitro stimulation of CMV-specific CD4(+) T cells with viral antigen in the presence of IL-12 was sufficient to dramatically change the transcriptional and functional profile of TNF-α(+) CD4(+) T cells, whereas TNF-α(+) and IFN-γ(+) CD4(+) T cells remained unaltered. These findings illustrate an intrinsic link between cytokine expression, transcriptional regulation and cellular differentiation, and their impact on functional plasticity of virus-specific CD4(+) T cells.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Citomegalovirus/imunologia , Regulação da Expressão Gênica/imunologia , Transcrição Gênica/imunologia , Adulto , Antígenos de Diferenciação/imunologia , Linfócitos T CD4-Positivos/citologia , Feminino , Perfilação da Expressão Gênica , Humanos , Interferon gama/imunologia , Masculino , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/imunologia
11.
J Biol Chem ; 287(44): 37269-81, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22952231

RESUMO

Altered peptide antigens that enhance T-cell immunogenicity have been used to improve peptide-based vaccination for a range of diseases. Although this strategy can prime T-cell responses of greater magnitude, the efficacy of constituent T-cell clonotypes within the primed population can be poor. To overcome this limitation, we isolated a CD8(+) T-cell clone (MEL5) with an enhanced ability to recognize the HLA A*0201-Melan A(27-35) (HLA A*0201-AAGIGILTV) antigen expressed on the surface of malignant melanoma cells. We used combinatorial peptide library screening to design an optimal peptide sequence that enhanced functional activation of the MEL5 clone, but not other CD8(+) T-cell clones that recognized HLA A*0201-AAGIGILTV poorly. Structural analysis revealed the potential for new contacts between the MEL5 T-cell receptor and the optimized peptide. Furthermore, the optimized peptide was able to prime CD8(+) T-cell populations in peripheral blood mononuclear cell isolates from multiple HLA A*0201(+) individuals that were capable of efficient HLA A*0201(+) melanoma cell destruction. This proof-of-concept study demonstrates that it is possible to design altered peptide antigens for the selection of superior T-cell clonotypes with enhanced antigen recognition properties.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/metabolismo , Antígeno HLA-A2/imunologia , Antígeno MART-1/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Apresentação de Antígeno , Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Dicroísmo Circular , Antígeno HLA-A2/química , Antígeno HLA-A2/metabolismo , Humanos , Cinética , Antígeno MART-1/química , Antígeno MART-1/metabolismo , Melanoma/imunologia , Melanoma/terapia , Modelos Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Ressonância de Plasmônio de Superfície
12.
J Immunol ; 187(2): 654-63, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21677135

RESUMO

CD8(+) T cells recognize immunogenic peptides presented at the cell surface bound to MHCI molecules. Ag recognition involves the binding of both TCR and CD8 coreceptor to the same peptide-MHCI (pMHCI) ligand. Specificity is determined by the TCR, whereas CD8 mediates effects on Ag sensitivity. Anti-CD8 Abs have been used extensively to examine the role of CD8 in CD8(+) T cell activation. However, as previous studies have yielded conflicting results, it is unclear from the literature whether anti-CD8 Abs per se are capable of inducing effector function. In this article, we report on the ability of seven monoclonal anti-human CD8 Abs to activate six human CD8(+) T cell clones with a total of five different specificities. Six of seven anti-human CD8 Abs tested did not activate CD8(+) T cells. In contrast, one anti-human CD8 Ab, OKT8, induced effector function in all CD8(+) T cells examined. Moreover, OKT8 was found to enhance TCR/pMHCI on-rates and, as a consequence, could be used to improve pMHCI tetramer staining and the visualization of Ag-specific CD8(+) T cells. The anti-mouse CD8 Abs, CT-CD8a and CT-CD8b, also activated CD8(+) T cells despite opposing effects on pMHCI tetramer staining. The observed heterogeneity in the ability of anti-CD8 Abs to trigger T cell effector function provides an explanation for the apparent incongruity observed in previous studies and should be taken into consideration when interpreting results generated with these reagents. Furthermore, the ability of Ab-mediated CD8 engagement to deliver an activation signal underscores the importance of CD8 in CD8(+) T cell signaling.


Assuntos
Anticorpos/fisiologia , Antígenos CD8/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Citotoxicidade Imunológica , Antígenos HLA-A/química , Peptídeos/química , Receptores de Antígenos de Linfócitos T/deficiência , Anticorpos/metabolismo , Linfócitos T CD8-Positivos/citologia , Células Clonais , Antígenos HLA-A/imunologia , Antígeno HLA-A2 , Humanos , Imunofenotipagem , Ligantes , Peptídeos/análise , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/imunologia , Coloração e Rotulagem , Ressonância de Plasmônio de Superfície
13.
J Immunol ; 184(7): 3357-66, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20190139

RESUMO

CD8(+) CTLs are essential for effective immune defense against intracellular microbes and neoplasia. CTLs recognize short peptide fragments presented in association with MHC class I (MHCI) molecules on the surface of infected or dysregulated cells. Ag recognition involves the binding of both TCR and CD8 coreceptor to a single ligand (peptide MHCI [pMHCI]). The TCR/pMHCI interaction confers Ag specificity, whereas the pMHCI/CD8 interaction mediates enhanced sensitivity to Ag. Striking biophysical differences exist between the TCR/pMHCI and pMHCI/CD8 interactions; indeed, the pMHCI/CD8 interaction can be >100-fold weaker than the cognate TCR/pMHCI interaction. In this study, we show that increasing the strength of the pMHCI/CD8 interaction by approximately 15-fold results in nonspecific, cognate Ag-independent pMHCI tetramer binding at the cell surface. Furthermore, pMHCI molecules with superenhanced affinity for CD8 activate CTLs in the absence of a specific TCR/pMHCI interaction to elicit a full range of effector functions, including cytokine/chemokine release, degranulation and proliferation. Thus, the low solution binding affinity of the pMHCI/CD8 interaction is essential for the maintenance of CTL Ag specificity.


Assuntos
Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Ativação Linfocitária/imunologia , Linfócitos T Citotóxicos/imunologia , Antígenos CD8/imunologia , Antígenos CD8/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Separação Celular , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA