Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Tradit Complement Med ; 12(3): 287-301, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35493312

RESUMO

Background and aim: Metabolic syndrome (MetS) is a complex disease of physiological imbalances interrelated to abnormal metabolic conditions, such as abdominal obesity, type II diabetes, dyslipidemia and hypertension. In the present pilot study, we investigated the nutraceutical bitter melon (Momordica charantia L) -intake induced transcriptome and metabolome changes and the converging metabolic signaling networks underpinning its inhibitory effects against MetS-associated risk factors. Experimental procedure: Metabolic effects of lyophilized bitter melon juice (BMJ) extract (oral gavage 200 mg/kg/body weight-daily for 40 days) intake were evaluated in diet-induced obese C57BL/6J male mice [fed-high fat diet (HFD), 60 kcal% fat]. Changes in a) serum levels of biochemical parameters, b) gene expression in the hepatic transcriptome (microarray analysis using Affymetrix Mouse Exon 1.0 ST arrays), and c) metabolite abundance levels in lipid-phase plasma [liquid chromatography mass spectrometry (LC-MS)-based metabolomics] after BMJ intervention were assessed. Results and conclusion: BMJ-mediated changes showed a positive trend towards enhanced glucose homeostasis, vitamin D metabolism and suppression of glycerophospholipid metabolism. In the liver, nuclear peroxisome proliferator-activated receptor (PPAR) and circadian rhythm signaling, as well as bile acid biosynthesis and glycogen metabolism targets were modulated by BMJ (p < 0.05). Thus, our in-depth transcriptomics and metabolomics analysis suggests that BMJ-intake lowers susceptibility to the onset of high-fat diet associated MetS risk factors partly through modulation of PPAR signaling and its downstream targets in circadian rhythm processes to prevent excessive lipogenesis, maintain glucose homeostasis and modify immune responses signaling.

3.
J Med Chem ; 61(17): 7942-7951, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30059212

RESUMO

Autotaxin is an extracellular phospholipase D that catalyzes the hydrolysis of lysophosphatidyl choline (LPC) to generate the bioactive lipid lysophosphatidic acid (LPA). Autotaxin has been implicated in many pathological processes relevant to cancer. Intraperitoneal administration of an autotaxin inhibitor may benefit patients with ovarian cancer; however, low molecular mass compounds are known to be rapidly cleared from the peritoneal cavity. Icodextrin is a polymer that is already in clinical use because it is slowly eliminated from the peritoneal cavity. Herein we report conjugation of the autotaxin inhibitor HA155 to icodextrin. The conjugate inhibits autotaxin activity (IC50 = 0.86 ± 0.13 µg mL-1) and reduces cell migration. Conjugation of the inhibitor increased its solubility, decreased its membrane permeability, and improved its intraperitoneal retention in mice. These observations demonstrate the first application of icodextrin as a covalently-bonded drug delivery platform with potential use in the treatment of ovarian cancer.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Icodextrina/química , Neoplasias Ovarianas/tratamento farmacológico , Diester Fosfórico Hidrolases/química , Animais , Antineoplásicos/síntese química , Feminino , Humanos , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Diester Fosfórico Hidrolases/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cancer Res ; 78(17): 4971-4983, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29997230

RESUMO

Persistent bronchial dysplasia is associated with increased risk of developing invasive squamous cell carcinoma (SCC) of the lung. In this study, we hypothesized that differences in gene expression profiles between persistent and regressive bronchial dysplasia would identify cellular processes that underlie progression to SCC. RNA expression arrays comparing baseline biopsies from 32 bronchial sites that persisted/progressed to 31 regressive sites showed 395 differentially expressed genes [ANOVA, FDR ≤ 0.05). Thirty-one pathways showed significantly altered activity between the two groups, many of which were associated with cell-cycle control and proliferation, inflammation, or epithelial differentiation/cell-cell adhesion. Cultured persistent bronchial dysplasia cells exhibited increased expression of Polo-like kinase 1 (PLK1), which was associated with multiple cell-cycle pathways. Treatment with PLK1 inhibitor induced apoptosis and G2-M arrest and decreased proliferation compared with untreated cells; these effects were not seen in normal or regressive bronchial dysplasia cultures. Inflammatory pathway activity was decreased in persistent bronchial dysplasia, and the presence of an inflammatory infiltrate was more common in regressive bronchial dysplasia. Regressive bronchial dysplasia was also associated with trends toward overall increases in macrophages and T lymphocytes and altered polarization of these inflammatory cell subsets. Increased desmoglein 3 and plakoglobin expression was associated with higher grade and persistence of bronchial dysplasia. These results identify alterations in the persistent subset of bronchial dysplasia that are associated with high risk for progression to invasive SCC. These alterations may serve as strong markers of risk and as effective targets for lung cancer prevention.Significance: Gene expression profiling of high-risk persistent bronchial dysplasia reveals changes in cell-cycle control, inflammatory activity, and epithelial differentiation/cell-cell adhesion that may underlie progression to invasive SCC. Cancer Res; 78(17); 4971-83. ©2018 AACR.


Assuntos
Carcinoma de Células Escamosas/genética , Inflamação/genética , Neoplasias Pulmonares/genética , Lesões Pré-Cancerosas/genética , Adulto , Idoso , Biópsia , Brônquios/metabolismo , Brônquios/patologia , Broncopatias/genética , Broncopatias/patologia , Carcinoma de Células Escamosas/patologia , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proliferação de Células/genética , Desmogleína 3/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/patologia , Neoplasias Pulmonares/patologia , Masculino , Metaplasia , Pessoa de Meia-Idade , Lesões Pré-Cancerosas/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , gama Catenina/genética , Quinase 1 Polo-Like
5.
J Neuroinflammation ; 15(1): 185, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29907154

RESUMO

BACKGROUND: Macrophages play a key role in peripheral nerve repair and demonstrate complex phenotypes that are highly dependent on microenvironmental cues. METHODS: We determined temporal changes in macrophage gene expression over time using RNA sequencing after fluorescence-activated cell sorting (FACS) macrophage populations from injured peripheral nerve. We identified key upstream regulators and dominant pathways using ingenuity pathway analysis and confirmed these changes with NanoString technology. We then investigate the effects of extreme polarizers of macrophage phenotype (IL4 and IFNγ) on nerve regeneration. We determined macrophage gene expression in vivo at the site of peripheral nerve injury with NanoString technology, and assessed recovery from sciatic nerve injury by cranial tibial muscle weights and retrograde labeling motor neurons in mice with deletion of IL4 or IFNγ receptors. RESULTS: We demonstrate that IL4R and IFNγR deletions provide complementary responses to polarization, and alter expression of genes associated with angiogenesis and axonal extension, but do not influence recovery from peripheral nerve transection at 8 weeks after repair. CONCLUSIONS: Overall, this study provides a framework to evaluate the phenotype of macrophages over time, and provides a broader and more precise assessment of gene expression changes than has previously been commonly used. This data suggests ways in which polarization may be modulated to improve repair.


Assuntos
Regulação da Expressão Gênica/fisiologia , Macrófagos/patologia , Traumatismos dos Nervos Periféricos/patologia , Animais , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular , Interleucina-1/genética , Interleucina-1/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/induzido quimicamente , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Estatísticas não Paramétricas , Fatores de Tempo , Transfecção , Receptor de Interferon gama
6.
Viral Immunol ; 31(3): 206-222, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29256819

RESUMO

Fatal pulmonary arterial hypertension (PAH) affects HIV-infected individuals at significantly higher frequencies. We previously showed plexiform-like lesions characterized by recanalized lumenal obliteration, intimal disruption, medial hypertrophy, and thrombosis consistent with PAH in rhesus macaques infected with chimeric SHIVnef but not with the parental SIVmac239, suggesting that Nef is implicated in the pathophysiology of HIV-PAH. However, the current literature on non-human primates as animal models for SIV(HIV)-associated pulmonary disease reports the ultimate pathogenic pulmonary outcomes of the research efforts; however, the variability and features in the actual disease progression remain poorly described, particularly when using different viral sources for infection. We analyzed lung histopathology, performed immunophenotyping of cells in plexogenic lesions pathognomonic of PAH, and measured cardiac hypertrophy biomarkers and cytokine expression in plasma and lung of juvenile SHIVnef-infected macaques. Here, we report significant hematopathologies, changes in cardiac biomarkers consistent with ventricular hypertrophy, significantly increased levels of interleukin-12 and GM-CSF and significantly decreased sCD40 L, CCL-2, and CXCL-1 in plasma of the SHIVnef group. Pathway analysis of inflammatory gene expression predicted activation of NF-κB transcription factor RelB and inhibition of bone morphogenetic protein type-2 in the setting of SHIVnef infection. Our findings highlight the utility of SHIVnef-infected macaques as suitable models of HIV-associated pulmonary vascular remodeling as pathogenetic changes are concordant with features of idiopathic, familial, scleroderma, and HIV-PAH.


Assuntos
Cardiomegalia/patologia , Citocinas/análise , Hipertensão Pulmonar/patologia , Pulmão/patologia , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Remodelação Vascular , Animais , Perfilação da Expressão Gênica , HIV/genética , HIV/crescimento & desenvolvimento , Histocitoquímica , Imunofenotipagem , Masculino , Plasma/química , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento
7.
PLoS One ; 12(2): e0172116, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28196122

RESUMO

A hallmark of acute respiratory distress syndrome (ARDS) is accumulation of protein-rich edema in the distal airspaces and its removal is critical for patient survival. Previous studies have shown a detrimental role of Glycogen Synthase Kinase (GSK) 3ß during ARDS via inhibition of alveolar epithelial protein transport. We hypothesized that post-transcriptional regulation of GSK3ß could play a functional role in ARDS resolution. To address this hypothesis, we performed an in silico analysis to identify regulatory genes whose expression correlation to GSK3ß messenger RNA utilizing two lung cancer cell line array datasets. Among potential regulatory partners of GSK3ß, these studies identified the RNA-binding protein ELAVL-1/HuR (Embryonic Lethal, Abnormal Vision, Drosophila-Like) as a central component in a likely GSK3ß signaling network. ELAVL-1/HuR is a RNA-binding protein that selectively binds to AU-rich elements of mRNA and enhances its stability thereby increasing target gene expression. Subsequent studies with siRNA suppression of ELAVL-1/HuR demonstrated deceased GSK3ß mRNA and protein expression and improved clearance of FITC-albumin in A549 cells. Conversely, stabilization of ELAVL-1/HuR with the proteasome inhibitor MG-132 resulted in induction of GSK3ß at mRNA and protein level and attenuated FITC-albumin clearance. Utilizing ventilator-induced lung injury or intra-tracheal installation of hydrochloric acid to induce ARDS in mice, we observed increased mRNA and protein expression of ELAVL-1/HuR and GSK3ß. Together, our findings indicate a previously unknown interaction between GSK3ß and ELAV-1 during ARDS, and suggest the inhibition of the ELAV-1- GSK3ß pathways as a novel ARDS treatment approach.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Células A549 , Animais , Modelos Animais de Doenças , Proteína Semelhante a ELAV 1/genética , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Ácido Clorídrico/toxicidade , Camundongos , RNA Mensageiro/genética , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/patologia
8.
PLoS One ; 11(12): e0167392, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27907090

RESUMO

The epidermis serves as a critical protective barrier between the internal and external environment of the human body. Its remarkable barrier function is established through the keratinocyte (KC) terminal differentiation program. The transcription factors specifically regulating terminal differentiation remain largely unknown. Using a RNA-sequencing (RNA-seq) profiling approach, we found that forkhead box c 1 (FOXC1) was significantly up-regulated in human normal primary KC during the course of differentiation. This observation was validated in human normal primary KC from several different donors and human skin biopsies. Silencing FOXC1 in human normal primary KC undergoing differentiation led to significant down-regulation of late terminal differentiation genes markers including epidermal differentiation complex genes, keratinization genes, sphingolipid/ceramide metabolic process genes and epidermal specific cell-cell adhesion genes. We further demonstrated that FOXC1 works down-stream of ZNF750 and KLF4, and upstream of GRHL3. Thus, this study defines FOXC1 as a regulator specific for KC terminal differentiation and establishes its potential position in the genetic regulatory network.


Assuntos
Diferenciação Celular/genética , Epiderme/metabolismo , Fatores de Transcrição Forkhead/biossíntese , Queratinócitos/metabolismo , Biópsia , Proteínas de Ligação a DNA/biossíntese , Epiderme/crescimento & desenvolvimento , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes/genética , Inativação Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/biossíntese , Organogênese/genética , Cultura Primária de Células , RNA Interferente Pequeno , Fatores de Transcrição/biossíntese , Ativação Transcricional/genética , Proteínas Supressoras de Tumor
9.
Mol Cancer Res ; 13(9): 1306-15, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26078295

RESUMO

UNLABELLED: Next-generation sequencing (NGS) of human bladder cancer has revealed many gene alterations compared with normal tissue, with most being predicted to be "loss of function." However, given the high number of alterations, evaluating the functional impact of each is impractical. Here, we develop and use a high-throughput, in vivo strategy to determine which alterations are loss of function in tumor growth suppressors. Genes reported as altered by NGS in bladder cancer patients were bioinformatically processed by MutationTaster and MutationAssessor, with 283 predicted as loss of function. An shRNA lentiviral library targeting these genes was transduced into T24 cells, a nontumorigenic human bladder cancer cell line, followed by injection into mice. Tumors that arose were sequenced and the dominant shRNA constructs were found to target IQGAP1, SAMD9L, PCIF1, MED1, and KATNAL1 genes. In vitro validation experiments revealed that shRNA molecules directed at IQGAP1 showed the most profound increase in anchorage-independent growth of T24 cells. The clinical relevance of IQGAP1 as a tumor growth suppressor is supported by the finding that its expression is lower in bladder cancer compared with benign patient urothelium in multiple independent datasets. Lower IQGAP1 protein expression associated with higher tumor grade and decreased patient survival. Finally, depletion of IQGAP1 leads to increased TGFBR2 with TGFß signaling, explaining in part how reduced IQGAP1 promotes tumor growth. These findings suggest IQGAP1 is a bladder tumor growth suppressor that works via modulating TGFß signaling and is a potentially clinically useful biomarker. IMPLICATIONS: This study used gene mutation information from patient-derived bladder tumor specimens to inform the development of a screen used to identify novel tumor growth suppressors. This included identification of the protein IQGAP1 as a potent bladder cancer growth suppressor.


Assuntos
Genes Supressores de Tumor , Testes Genéticos/métodos , Mutação , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Neoplasias da Bexiga Urinária/genética , Proteínas Ativadoras de ras GTPase/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Computadores Moleculares , Intervalo Livre de Doença , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Invasividade Neoplásica , Prognóstico , RNA Interferente Pequeno/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/metabolismo , Proteínas Ativadoras de ras GTPase/genética
10.
J Biol Chem ; 290(25): 15610-15620, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25925948

RESUMO

γ-Catenin (Plakoglobin), a well-described structural protein functioning at the adherens junctions and desmosomes, was shown to be either lost or weakly expressed in non-small cell lung cancer (NSCLC) cells and tumor tissues. However, the tumor suppressive affects of γ-catenin were not fully understood. In this study, we have identified a novel role for the affects of γ-catenin on non-small cell lung cancer (NSCLC) cell migration. Expression of γ-catenin in NSCLC cells resulted in reduced cell migration as determined by both scratch assays and trans-well cell migration assays. Moreover, the affects of γ-catenin on cell migration were observed to be p53-dependent. Mechanistically, the anti-migratory effects seen via γ-catenin were driven by the expression of hepatocyte growth factor activator inhibitor Type I (HAI-1 or SPINT-1), an upstream inhibitor of the c-MET signaling pathway. Furthermore, the re-expression of γ-catenin sensitized NSCLC cells to c-MET inhibitor-mediated growth inhibition. Taken together, we identify γ-catenin as a novel regulator of HAI-1, which is a critical regulator of HGF/c-MET signaling. Therefore, targeting γ-catenin-mediated HAI-1 expression might be a useful strategy to sensitize NSCLC to c-MET inhibitors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Movimento Celular , Desmoplaquinas/biossíntese , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/biossíntese , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Desmoplaquinas/genética , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Secretadas Inibidoras de Proteinases/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , gama Catenina
11.
mBio ; 6(2): e02510, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25714713

RESUMO

UNLABELLED: Hepatitis C virus (HCV) infection leads to persistence in the majority of cases despite triggering complex innate immune responses within the liver. Although hepatocytes are the preferred site for HCV replication, nonparenchymal cells (NPCs) can also contribute to antiviral immunity. Recent innovations involving single-genome amplification (SGA), direct amplicon sequencing, and phylogenetic inference have identified full-length transmitted/founder (T/F) viruses. Here, we tested the effect of HCV T/F viral RNA (vRNA) on innate immune signaling within hepatocytes and NPCs, including the HepG2 and Huh 7.5.1 cell lines, a human liver endothelial cell line (TMNK-1), a plasmacytoid dendritic cell line (GEN2.2), and a monocytic cell line (THP-1). Transfection with hepatitis C T/F vRNA induced robust transcriptional upregulation of type I and III interferons (IFNs) within HepG2 and TMNK-1 cells. Both the THP-1 and GEN2.2 lines demonstrated higher type I and III IFN transcription with genotype 3a compared to genotype 1a or 1b. Supernatants from HCV T/F vRNA-transfected TMNK-1 cells demonstrated superior viral control. Primary human hepatocytes (PHH) transfected with genotype 3a induced canonical pathways that included chemokine and IFN genes, as well as overrepresentation of RIG-I (DDX58), STAT1, and a Toll-like receptor 3 (TLR3) network. Full-length molecular clones of HCV induce broad IFN responses within hepatocytes and NPCs, highlighting that signals imparted by the various cell types within the liver may lead to divergent outcomes of infection. In particular, the finding that HCV genotypes differentially induce antiviral responses in NPCs and PHH might account for relevant clinical-epidemiological observations (higher clearance but greater necroinflammation in persistence with genotype 3). IMPORTANCE: Hepatitis C virus (HCV) has become a major worldwide problem, and it is now the most common viral infection for which there is no vaccine. HCV infection often leads to persistence of the virus and is a leading cause of chronic hepatitis, liver cancer, and cirrhosis. There are multiple genotypes of the virus, and patients infected with different viral genotypes respond to traditional therapy differently. However, the immune response to the virus within the liver has not been fully elucidated. Here, we determined the responses to different genotypes of HCV in cell types of the liver. We found that the immune response varied according to both cell type and HCV genotype, leading to a more pronounced induction of inflammatory pathways after exposure to certain genotypes. Therefore, inflammatory pathways that are being robustly activated by certain HCV genotypes could lead to more severe damage to the liver, inducing diverse outcomes and responses to therapy.


Assuntos
Genótipo , Hepacivirus/imunologia , Hepatite C/imunologia , Hepatite C/virologia , Fígado/imunologia , Fígado/virologia , Transdução de Sinais , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Interferons/biossíntese , Dados de Sequência Molecular , RNA Viral/genética , RNA Viral/metabolismo , Análise de Sequência de DNA , Transcrição Gênica
12.
Mol Cancer Res ; 13(3): 483-92, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25516960

RESUMO

UNLABELLED: RhoGDI2 (ARHGDIB) suppresses metastasis in a variety of cancers but the mechanism is unclear, thus hampering development of human therapeutics. RhoGDI2 is a guanine nucleotide dissociation inhibitor (GDI) for the Rho family of GTPases thought to primarily bind to Rac1; however, Rac1 activation was not decreased by RhoGDI2 expression in bladder cancer cells. To better understand the GTPase-binding partners for RhoGDI2, a mass spectrometry-based proteomic approach was used in bladder cancer cells. As expected, endogenous RhoGDI2 coimmunoprecipitates with Rac1 and unexpectedly also with RhoC. Further analysis demonstrated that RhoGDI2 negatively regulates RhoC, as knockdown of RhoGDI2 increased RhoC activation in response to serum stimulation. Conversely, overexpression of RhoGDI2 decreased RhoC activation. RhoC promoted bladder cancer cell growth and invasion, as knockdown increased cell doubling time, decreased invasion through Matrigel, and decreased colony formation in soft agar. Importantly, RhoC knockdown reduced in vivo lung colonization by bladder cancer cells following tail vein injection in immunocompromised mice. Finally, unbiased transcriptome analysis revealed a set of genes regulated by RhoGDI2 overexpression and RhoC knockdown in bladder cancer cells. IMPLICATIONS: RhoGDI2 suppresses bladder cancer metastatic colonization via negative regulation of RhoC activity, providing a rationale for the development of therapeutics that target RhoC signaling.


Assuntos
Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Neoplasias da Bexiga Urinária/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Inibidor beta de Dissociação do Nucleotídeo Guanina rho/metabolismo , Animais , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Transplante de Neoplasias , Proteômica , Neoplasias da Bexiga Urinária/patologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína de Ligação a GTP rhoC
13.
Clin Cancer Res ; 20(18): 4935-48, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25225064

RESUMO

PURPOSE: Genetic analysis of bladder cancer has revealed a number of frequently altered genes, including frequent alterations of the telomerase (TERT) gene promoter, although few altered genes have been functionally evaluated. Our objective is to characterize alterations observed by exome sequencing and sequencing of the TERT promoter, and to examine the functional relevance of histone lysine (K)-specific demethylase 6A (KDM6A/UTX), a frequently mutated histone demethylase, in bladder cancer. EXPERIMENTAL DESIGN: We analyzed bladder cancer samples from 54 U.S. patients by exome and targeted sequencing and confirmed somatic variants using normal tissue from the same patient. We examined the biologic function of KDM6A using in vivo and in vitro assays. RESULTS: We observed frequent somatic alterations in BRCA1 associated protein-1 (BAP1) in 15% of tumors, including deleterious alterations to the deubiquitinase active site and the nuclear localization signal. BAP1 mutations contribute to a high frequency of tumors with breast cancer (BRCA) DNA repair pathway alterations and were significantly associated with papillary histologic features in tumors. BAP1 and KDM6A mutations significantly co-occurred in tumors. Somatic variants altering the TERT promoter were found in 69% of tumors but were not correlated with alterations in other bladder cancer genes. We examined the function of KDM6A, altered in 24% of tumors, and show depletion in human bladder cancer cells, enhanced in vitro proliferation, in vivo tumor growth, and cell migration. CONCLUSIONS: This study is the first to identify frequent BAP1 and BRCA pathway alterations in bladder cancer, show TERT promoter alterations are independent of other bladder cancer gene alterations, and show KDM6A loss is a driver of the bladder cancer phenotype.


Assuntos
Carcinoma de Células de Transição/genética , Histona Desmetilases/genética , Proteínas Nucleares/genética , Telomerase/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Neoplasias da Bexiga Urinária/genética , Proteína BRCA1/genética , Carcinoma de Células de Transição/metabolismo , Carcinoma de Células de Transição/patologia , Humanos , Mutação , Transcriptoma , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
14.
ACS Med Chem Lett ; 5(1): 34-9, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24900771

RESUMO

Autotaxin is an extracellular phospholipase D that catalyzes the hydrolysis of lysophosphatidyl choline (LPC) to bioactive lipid lysophosphatidic acid (LPA). LPA has been implicated in many pathological processes relevant to cancer, including cell migration and invasion, proliferation, and survival. The most potent autotaxin inhibitor described to date is the LPA analogue S32826 (IC50 5.6 nM). S32826 and many other autotaxin inhibitors are notably lipophilic, creating a need to improve their physical properties. Polymers are becoming an increasingly useful tool in the delivery of drugs and have the potential to improve the properties of small molecules. Herein we report the synthesis of a S32826 dendrimer conjugate and its biological evaluation. The conjugate was found to inhibit autotaxin activity using two different substrates and to decrease the migration of an ovarian cancer cell line modified to overexpress autotaxin. Furthermore, the conjugate potentiated activation of caspase 3/7 induced by carboplatin.

15.
Clin Cancer Res ; 20(12): 3299-309, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24771645

RESUMO

PURPOSE: FGFR1 gene copy number (GCN) is being evaluated as a biomarker for FGFR tyrosine kinase inhibitor (TKI) response in squamous cell lung cancers (SCC). The exclusive use of FGFR1 GCN for predicting FGFR TKI sensitivity assumes increased GCN is the only mechanism for biologically relevant increases in FGFR1 signaling. Herein, we tested whether FGFR1 mRNA and protein expression may serve as better biomarkers of FGFR TKI sensitivity in lung cancer. EXPERIMENTAL DESIGN: Histologically diverse lung cancer cell lines were submitted to assays for ponatinib sensitivity, a potent FGFR TKI. A tissue microarray composed of resected lung tumors was submitted to FGFR1 GCN, and mRNA analyses and the results were validated with The Cancer Genome Atlas (TCGA) lung cancer data. RESULTS: Among 58 cell lines, 14 exhibited ponatinib sensitivity (IC50 values ≤ 50 nmol/L) that correlated with FGFR1 mRNA and protein expression, but not with FGFR1 GCN or histology. Moreover, ponatinib sensitivity associated with mRNA expression of the ligands, FGF2 and FGF9. In resected tumors, 22% of adenocarcinomas and 28% of SCCs expressed high FGFR1 mRNA. Importantly, only 46% of SCCs with increased FGFR1 GCN expressed high mRNA. Lung cancer TCGA data validated these findings and unveiled overlap of FGFR1 mRNA positivity with KRAS and PIK3CA mutations. CONCLUSIONS: FGFR1 dependency is frequent across various lung cancer histologies, and FGFR1 mRNA may serve as a better biomarker of FGFR TKI response in lung cancer than FGFR1 GCN. The study provides important and timely insight into clinical testing of FGFR TKIs in lung cancer and other solid tumor types.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Dosagem de Genes , Inibidores de Proteínas Quinases/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Proliferação de Células , Estudos de Coortes , Seguimentos , Amplificação de Genes , Humanos , Imidazóis/farmacologia , Técnicas Imunoenzimáticas , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Estadiamento de Neoplasias , Piridazinas/farmacologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Células Tumorais Cultivadas
16.
Cancer Prev Res (Phila) ; 7(2): 255-65, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24346345

RESUMO

Chromosomal instability is central to the process of carcinogenesis. The genome-wide detection of somatic chromosomal alterations (SCA) in small premalignant lesions remains challenging because sample heterogeneity dilutes the aberrant cell information. To overcome this hurdle, we focused on the B allele frequency data from single-nucleotide polymorphism microarrays (SNP arrays). The difference of allelic fractions between paired tumor and normal samples from the same patient (delta-θ) provides a simple but sensitive detection of SCA in the affected tissue. We applied the delta-θ approach to small, heterogeneous clinical specimens, including endobronchial biopsies and brushings. Regions identified by delta-θ were validated by FISH and quantitative PCR in heterogeneous samples. Distinctive genomic variations were successfully detected across the whole genome in all invasive cancer cases (6 of 6), carcinoma in situ (3 of 3), and high-grade dysplasia (severe or moderate; 3 of 11). Not only well-described SCAs in lung squamous cell carcinoma, but also several novel chromosomal alterations were frequently found across the preinvasive dysplastic cases. Within these novel regions, losses of putative tumor suppressors (RNF20 and SSBP2) and an amplification of RASGRP3 gene with oncogenic activity were observed. Widespread sampling of the airway during bronchoscopy demonstrated that field cancerization reflected by SCAs at multiple sites was detectable. SNP arrays combined with delta-θ analysis can detect SCAs in heterogeneous clinical sample and expand our ability to assess genomic instability in the airway epithelium as a biomarker of lung cancer risk.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Instabilidade Cromossômica/genética , Estudo de Associação Genômica Ampla/métodos , Neoplasias Pulmonares/genética , Análise em Microsséries , Polimorfismo de Nucleotídeo Único , Lesões Pré-Cancerosas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/patologia , Linhagem Celular , Aberrações Cromossômicas , Humanos , Perda de Heterozigosidade , Neoplasias Pulmonares/patologia , Lesões Pré-Cancerosas/patologia
17.
Biol Open ; 2(7): 675-85, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23862015

RESUMO

In non-small cell lung cancer cell lines, activation of ß-catenin independent signaling, via Wnt7a/Frizzled9 signaling, leads to reversal of cellular transformation, reduced anchorage-independent growth and induction of epithelial differentiation. miRNA expression profiling on a human lung adenocarcinoma cell line (A549) identified hsa-miR29b as an important downstream target of Wnt7a/Frizzled9 signaling. We show herein that hsa-miR29b expression is lost in non-small cell lung cancer (NSCLC) cell lines and stimulation of ß-catenin independent signaling, via Wnt7a expression, in NSCLC cell lines results in increased expression of hsa-miR29b. Surprisingly, we also identify specific regulation of hsa-miR29b by Wnt7a but not by Wnt3, a ligand for ß-catenin-dependent signaling. Interestingly, knockdown of hsa-miR29b was enough to abrogate the tumor suppressive effects of Wnt7a/Frizzled9 signaling in NSCLC cells, suggesting that hsa-miR29b is an important mediator of ß-catenin independent signaling. Finally, we show for the first time that hsa-miR29b plays an important role as a tumor suppressor in lung cancer by targeting murine double mutant 2 (MDM2), revealing novel nodes for Wnt7a/Frizzled9-mediated regulation of NSCLC cell proliferation.

18.
Am J Respir Cell Mol Biol ; 49(2): 316-23, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23590301

RESUMO

Although most cases of chronic obstructive pulmonary disease (COPD) occur in smokers, only a fraction of smokers develop the disease. We hypothesized distinct molecular signatures for COPD and emphysema in the peripheral blood mononuclear cells (PBMCs) of current and former smokers. To test this hypothesis, we identified and validated PBMC gene expression profiles in smokers with and without COPD. We generated expression data on 136 subjects from the COPDGene study, using Affymetrix U133 2.0 microarrays (Affymetrix, Santa Clara, CA). Multiple linear regression with adjustment for covariates (gender, age, body mass index, family history, smoking status, and pack-years) was used to identify candidate genes, and ingenuity pathway analysis was used to identify candidate pathways. Candidate genes were validated in 149 subjects according to multiplex quantitative real-time polymerase chain reaction, which included 75 subjects not previously profiled. Pathways that were differentially expressed in subjects with COPD and emphysema included those that play a role in the immune system, inflammatory responses, and sphingolipid (ceramide) metabolism. Twenty-six of the 46 candidate genes (e.g., FOXP1, TCF7, and ASAH1) were validated in the independent cohort. Plasma metabolomics was used to identify a novel glycoceramide (galabiosylceramide) as a biomarker of emphysema, supporting the genomic association between acid ceramidase (ASAH1) and emphysema. COPD is a systemic disease whose gene expression signatures in PBMCs could serve as novel diagnostic or therapeutic targets.


Assuntos
Gangliosídeos/sangue , Regulação da Expressão Gênica , Leucócitos Mononucleares/metabolismo , Doença Pulmonar Obstrutiva Crônica/sangue , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Feminino , Humanos , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Enfisema Pulmonar/sangue , Enfisema Pulmonar/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real
19.
Am J Respir Cell Mol Biol ; 48(6): 725-32, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23392573

RESUMO

Chronic second-hand smoke (SHS) exposure comprises the main risk factor for nonsmokers to develop chronic obstructive pulmonary disease (COPD). However, the mechanisms behind the chronic inflammation and lung destruction remain incompletely understood. In this study, we show that chronic exposure of Sprague-Dawley rats to SHS results in a significant increase of proinflammatory cytokine IL-18 and chemokine (C-C motif) ligand 5 in the bronchoalveolar lavage fluid (BALF) and a significant decrease of vascular endothelial growth factor (VEGF) in the lung tissue. SHS exposure resulted in progressive alveolar airspace enlargement, cell death, pulmonary vessel loss, vessel muscularization, collagen deposition, and right ventricular hypertrophy. Alveolar macrophages displayed a foamy phenotype and a decreased expression of the natural inhibitor of IL-18, namely, IL-18 binding protein (IL-18BP). Moreover, IL-18 down-regulated the expression of VEGF receptor-1 and VEGFR receptor-2, and induced apoptosis in pulmonary microvascular endothelial cells in vitro. We also observed a trend toward increased concentrations of IL-18 in the BALF of patients with COPD. Our findings suggest that IL-18-mediated endothelial cell death may contribute to vascular destruction and disappearance in SHS-induced COPD. Moreover, IL-18 and IL-18BP are potential new targets for therapeutics.


Assuntos
Células Endoteliais/patologia , Interleucina-18/imunologia , Enfisema Pulmonar/patologia , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Permeabilidade Capilar , Cardiomegalia/induzido quimicamente , Cardiomegalia/patologia , Morte Celular , Linhagem Celular , Quimiocina CCL5/imunologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Humanos , Imuno-Histoquímica , Exposição por Inalação/efeitos adversos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/imunologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Ratos , Ratos Sprague-Dawley , Produtos do Tabaco/efeitos adversos , Fator A de Crescimento do Endotélio Vascular , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Redução de Peso
20.
Endocrinology ; 152(10): 3603-13, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21810943

RESUMO

Gonadotrope and null cell pituitary tumors cause significant morbidity, often presenting with signs of hypogonadism together with visual disturbances due to mass effects. Surgery and radiation are the only therapeutic options to date. To identify dysregulated genes and pathways that may play a role in tumorigenesis and/or progression, molecular profiling was performed on 14 gonadotrope tumors, with nine normal human pituitaries obtained at autopsy serving as controls. Bioinformatic analysis identified putative downstream effectors of tumor protein 53 (p53) that were consistently repressed in gonadotrope pituitary tumors, including RPRM, P21, and PMAIP1, with concomitant inhibition of the upstream p53 regulator, PLAGL1(Zac1). Further analysis of the growth arrest and DNA damage-inducible (GADD45) family revealed no change in the p53 target, GADD45α, but identified repression of GADD45ß in pituitary tumors in addition to the previously reported inhibition of GADD45γ. Overexpression of GADD45ß in LßT2 mouse gonadotrope cells blocked tumor cell proliferation and increased rates of apoptosis in response to growth factor withdrawal. Stable gonadotrope cell transfectants expressing increased GADD45ß showed decreased colony formation in soft agar, confirming its normal role as a tumor suppressor. Unlike previous studies of GADD45γ in pituitary tumors and α and ß in other tumors, bisulfite sequencing showed no evidence of hypermethylation of the GADD45ß promoter in human pituitary tumor samples to explain the repression of its expression. Thus, GADD45ß is a novel pituitary tumor suppressor whose reexpression blocks proliferation, survival, and tumorigenesis. Together these studies identify new targets and mechanisms to explore in pituitary tumor initiation and progression.


Assuntos
Antígenos de Diferenciação/fisiologia , Gonadotrofos/patologia , Neoplasias Hipofisárias/patologia , Proteínas Supressoras de Tumor/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antígenos de Diferenciação/genética , Linhagem Celular , Dano ao DNA , Feminino , Genes p53 , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA