Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299571

RESUMO

A series of heterometallic carboxylate 1D polymers of the general formula [LnIIICd2(piv)7(H2O)2]n·nMeCN (LnIII = Sm (1), Eu (2), Tb (3), Dy (4), Ho (5), Er (6), Yb (7); piv = anion of trimethylacetic acid) was synthesized and structurally characterized. The use of CdII instead of ZnII under similar synthetic conditions resulted in the formation of 1D polymers, in contrast to molecular trinuclear complexes with LnIIIZn2 cores. All complexes 1-7 are isostructural. The luminescent emission and excitation spectra for 2-4 have been studied, the luminescence decay kinetics for 2 and 3 was measured. Magnetic properties of the complexes 3-5 and 7 have been studied; 4 and 7 exhibited the properties of field-induced single-molecule magnets in an applied external magnetic field. Magnetic properties of 4 and 7 were modelled using results of SA-CASSCF/SO-RASSI calculations and SINGLE_ANISO procedure. Based on the analysis of the magnetization relaxation and the results of ab initio calculations, it was found that relaxation in 4 predominantly occurred by the sum of the Raman and QTM mechanisms, and by the sum of the direct and Raman mechanisms in the case of 7.

2.
Molecules ; 26(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070061

RESUMO

The reaction of the redox active 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-BIAN) and iron(II) iodide in acetonitrile led to a new complex [(dpp-BIAN)FeIII2] (1). Molecular structure of 1 was determined by the single crystal X-ray diffraction analysis. The spin state of the iron cation in complex 1 at room temperature and the magnetic behavior of 1 in the temperature range of 2-300 K were studied using Mossbauer spectroscopy and magnetic susceptibility measurements, respectively. The neutral character of dpp-BIAN in 1 was confirmed by IR and UV spectroscopy. The electrochemistry of 1 was studied in solution and solid state using cyclic voltammetry. The generation of the radical anion form of the dpp-BIAN ligand upon reduction of 1 in a CH2Cl2 solution was monitored by EPR spectroscopy.

3.
Dalton Trans ; 49(42): 15081-15094, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33107529

RESUMO

Two new mixed nickel-gallium chalcogenides, Ni9.39Ga2S2 and Ni5.80GaTe2, and a new mixed nickel-indium telluride, Ni5.78InTe2, have been synthesized by a high-temperature ampoule route with the addition of iodine, and characterized from single-crystal or powder diffraction data. They belong to the relatively uncommon Ni7-xMQ2/Ni10-xM2Q2 type of structures (M = Ge, Sn, Sb, In), and are built from p-block metal-centered nickel cuboctahedra, alternating along the c axis with defective Cu2Sb-type nickel-chalcogen ones. Both tellurium-containing compounds show a small degree of orthorhombic distortion with respect to the idealized tetragonal structure, only detectable in the powder diffraction data. No phase transition to the tetragonal structure was detected for Ni5.80GaTe2 by the in situ powder diffraction measurements from room temperature to 550 °C. DFT calculations show close relationships of electronic structures of these ternary compounds to their parent intermetallics, Ni3M (M = Ga, In). Metallic conductivity and paramagnetic properties are predicted for all three with the latter confirmed by magnetic measurements. The bonding patterns, investigated via the ELF topological analysis, show multi-centered nickel - p-block metal bonds in the AuCu3-type fragments and pairwise covalent interactions in the nickel-chalcogen fragments. Both Ni7-xMTe2 compounds showed no structural or compositional changes upon high-temperature mid-pressure hydrogenation.

4.
ACS Omega ; 2(10): 6852-6862, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457271

RESUMO

The study tackles one of the challenges in developing platinum-free molecular electrocatalysts for hydrogen evolution, which is to seek for new possibilities to ensure large turnover numbers by stabilizing electrocatalytic intermediates. These species are often much more reactive than the initial electrocatalysts, and if not properly stabilized by a suitable choice of functionalizing substituents, they have a limited long-time activity. Here, we describe new iron and cobalt(II) cage complexes (clathrochelates) that in contrast to many previously reported complexes of this type do not act as electrocatalysts for hydrogen evolution. We argue that the most probable reason for this behavior is an excessive stabilization of the metal(I) species by perfluoroaryl ribbed groups, resulting in an unprecedented long-term stability of the metal(I) complexes even in acidic solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA