Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(7): 5591-5602, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38507819

RESUMO

We propose an original strategy for metastasis prevention using a combination of three microRNAs that blocks the dedifferentiation of cancer cells in a metastatic niche owing to the downregulation of stemness genes. Transcriptome microarray analysis was applied to identify the effects of a mixture of microRNAs on the pattern of differentially expressed genes in human breast cancer cell lines. Treatment of differentiated CD44- cancer cells with the microRNA mixture inhibited their ability to form mammospheres in vitro. The combination of these three microRNAs encapsulated into lipid nanoparticles prevented lung metastasis in a mouse model of spontaneous metastasis. The mixture of three microRNAs (miR-195-5p/miR-520a/miR-630) holds promise for the development of an antimetastatic therapeutic that blocks tumor cell dedifferentiation, which occurs at secondary tumor sites and determines the transition of micrometastases to macrometastases.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Animais , Camundongos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Neoplasias Pulmonares/metabolismo , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica/prevenção & controle , Proliferação de Células/genética
2.
Colloids Surf B Biointerfaces ; 221: 112981, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36343480

RESUMO

The architecture of a nanoparticles' surface formed due to a modification with a ligand and protein corona formation in biofluids is critical for interactions with cells in vivo. Here we studied interactions of immune cells with magnetic nanoparticles (MNPs) covalently modified with polyethylene glycol (PEG) and their counterparts conjugated with peptides: a pH (low) insertion peptide (pHLIP) and cycloRGD as a targeting ligand in human serum. The conjugation of MNPs-PEG with pHLIP, but not with cycloRGD, enhanced the association of these particles with mononuclear phagocytic cells in vitro and in vivo. We did not find a clear difference in protein corona composition between the pHLIP-modified and parental PEGylated nanoparticles. Analysis of the effect of autologous human serum on MNP uptake by monocytes showed that the efficiency of endocytosis varies among healthy donors and depends on intrinsic properties of serum. Nevertheless, using classic blood, coagulation, biochemical tests, and anti-PEG IgG serum level, we failed to identify the cause of the observed interdonor variation. These individual differences should be taken into consideration during testing of nanotherapeutics.


Assuntos
Nanopartículas , Coroa de Proteína , Humanos , Ligantes , Nanopartículas/química , Polietilenoglicóis/química , Peptídeos
3.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36012356

RESUMO

Novel nanocomposite materials based on Fe3O4 magnetic nanoparticles (MNPs) coated with silica and covalently modified by [(3-triethoxysilyl)propyl]succinic acid-polyethylene glycol (PEG 3000) conjugate, which provides a high level of doxorubicin (Dox) loading, were obtained. The efficiency of Dox desorption from the surface of nanomaterials under the action of an alternating magnetic field (AMF) in acidic and neutral media was evaluated. Their high cytotoxicity against tumor cells, as well as the drug release upon application of AMF, which leads to an increase in the cytotoxic effect, was demonstrated.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Neoplasias , Linhagem Celular , Doxorrubicina/farmacologia , Portadores de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Fenômenos Magnéticos , Polietilenoglicóis , Dióxido de Silício
4.
ACS Appl Mater Interfaces ; 13(31): 36800-36815, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34324807

RESUMO

Magnetic Fe3O4 nanoparticles (MNPs) are often used to design agents enhancing contrast in magnetic resonance imaging (MRI) that can be considered as one of the efficient methods for cancer diagnostics. At present, increasing the specificity of the MRI contrast agent accumulation in tumor tissues remains an open question and attracts the attention of a wide range of researchers. One of the modern methods for enhancing the efficiency of contrast agents is the use of molecules for tumor acidic microenvironment targeting, for example, pH-low insertion peptide (pHLIP). We designed novel organosilicon MNPs covered with poly(ethylene glycol) (PEG) and covalently modified by pHLIP. To study the specific features of the binding of pHLIP-modified MNPs to cells, we also obtained nanoconjugates with Cy5 fluorescent dye embedded in the SiO2 shell. The nanoconjugates obtained were characterized by transmission electron microscopy (TEM), attenuated total reflection (ATR), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), dynamic light scattering (DLS), UV and fluorescence spectrometry, thermogravimetric analysis (TGA), CHN elemental analyses, and vibrating sample magnetometry. Low cytotoxicity and high specificity of cellular uptake of pHLIP-modified MNPs at pH 6.4 versus 7.4 (up to 23-fold) were demonstrated in vitro. The dynamics of the nanoconjugate accumulation in the 4T1 breast cancer orthotopically grown in BALB/c mice and MDA-MB231 xenografts was evaluated in MRI experiments. Biodistribution and biocompatibility studies of the obtained nanoconjugate showed no pathological change in organs and in the blood biochemical parameters of mice after MNP administration. A high accumulation rate of pHLIP-modified MNPs in tumor compared with PEGylated MNPs after their intravenous administration was demonstrated. Thus, we propose a promising approach to design an MRI agent with the tumor acidic microenvironment targeting ability.


Assuntos
Meios de Contraste/química , Proteínas Imobilizadas/química , Nanopartículas de Magnetita/química , Neoplasias/diagnóstico por imagem , Peptídeos/química , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Meios de Contraste/toxicidade , Feminino , Humanos , Concentração de Íons de Hidrogênio , Proteínas Imobilizadas/toxicidade , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/toxicidade , Camundongos Endogâmicos BALB C , Peptídeos/toxicidade , Dióxido de Silício/química , Dióxido de Silício/toxicidade
5.
PLoS Negl Trop Dis ; 11(7): e0005778, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28708894

RESUMO

BACKGROUND: European liver fluke Opisthorchis felineus, causing opisthorchiasis disease, is widespread in Russia, Ukraine, Kazakhstan and sporadically detected in the EU countries. O. felineus infection leads to hepatobiliary pathological changes, cholangitis, fibrosis and, in severe cases, malignant transformation of bile ducts. Due to absence of specific symptoms, the infection is frequently neglected for a long period. The association of opisthorchiasis with almost incurable bile duct cancer and rising international migration of people that increases the risk of the parasitic etiology of liver fibrosis in non-endemic regions determine high demand for development of approaches to opisthorchiasis detection. METHODOLOGY/PRINCIPAL FINDINGS: In vivo magnetic resonance imaging and spectroscopy (MRI and MRS) were applied for differential assessment of hepatic abnormalities induced by O. felineus in an experimental animal model. Correlations of the MR-findings with the histological data as well as the data of the biochemical analysis of liver tissue were found. MRI provides valuable information about the severity of liver impairments induced by opisthorchiasis. An MR image of O. felineus infected liver has a characteristic pattern that differs from that of closely related liver fluke infections. 1H and 31P MRS in combination with biochemical analysis data showed that O. felineus infection disturbed hepatic metabolism of the host, which was accompanied by cholesterol accumulation in the liver. CONCLUSIONS: A non-invasive approach based on the magnetic resonance technique is very advantageous and may be successfully used not only for diagnosing and evaluating liver damage induced by O. felineus, but also for investigating metabolic changes arising in the infected organ. Since damages induced by the liver fluke take place in different liver lobes, MRI has the potential to overcome liver biopsy sampling variability that limits predictive validity of biopsy analysis for staging liver fluke-induced fibrosis.


Assuntos
Cirrose Hepática/diagnóstico por imagem , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Opistorquíase/diagnóstico por imagem , Animais , Colangite/patologia , Cricetinae , Modelos Animais de Doenças , Fígado/parasitologia , Fígado/patologia , Cirrose Hepática/parasitologia , Cirrose Hepática/patologia , Masculino , Opisthorchis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA