Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(4): 296, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670941

RESUMO

Genes of the Sprouty family (Spry1-4) restrain signaling by certain receptor tyrosine kinases. Consequently, these genes participate in several developmental processes and function as tumor suppressors in adult life. Despite these important roles, the biology of this family of genes still remains obscure. Here we show that Sprouty proteins are general mediators of cellular senescence. Induction of cellular senescence by several triggers in vitro correlates with upregulation of Sprouty protein levels. More importantly, overexpression of Sprouty genes is sufficient to cause premature cellular senescence, via a conserved N-terminal tyrosine (Tyrosine 53 of Sprouty1). Accordingly, fibroblasts from knockin animals lacking that tyrosine escape replicative senescence. In vivo, heterozygous knockin mice display delayed induction of cellular senescence during cutaneous wound healing and upon chemotherapy-induced cellular senescence. Unlike other functions of this family of genes, induction of cellular senescence appears to be independent of activation of the ERK1/2 pathway. Instead, we show that Sprouty proteins induce cellular senescence upstream of the p38 pathway in these in vitro and in vivo paradigms.


Assuntos
Senescência Celular , Fibroblastos , Proteínas de Membrana , Animais , Camundongos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Humanos , Fibroblastos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Sistema de Sinalização das MAP Quinases , Cicatrização
2.
Biomed Pharmacother ; 168: 115817, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37925934

RESUMO

Metformin is a widespread antidiabetic agent that is commonly used as a treatment against type 2 diabetes mellitus patients. Regarding its therapeutic potential, multiple studies have concluded that Metformin exhibits antineoplastic activity on several types of cancer, including endometrial carcinoma. Although Metformin's antineoplastic activity is well documented, its cellular and molecular anticancer mechanisms are still a matter of controversy because a plethora of anticancer mechanisms have been proposed for different cancer cell types. In this study, we addressed the cellular and molecular mechanisms of Metformin's antineoplastic activity by using both in vitro and in vivo studies of Pten-loss driven carcinoma mouse models. In vivo, Metformin reduced endometrial neoplasia initiated by Pten-deficiency. Our in vitro studies using Pten-deficient endometrial organoids focused on both cellular and molecular levels in Metformin's tumor suppressive action. At cellular level, we showed that Metformin is involved in not only the proliferation of endometrial epithelial cells but also their regulation via a variety of mechanisms of epithelial-to-mesenchymal transition (EMT) as well as TGF-ß-induced apoptosis. At the molecular level, Metformin was shown to affect the TGF-ß signalling., a widely known signal that plays a pivotal role in endometrial carcinogenesis. In this respect, Metformin restored TGF-ß-induced apoptosis of Pten-deficient endometrial organoids through a p38-dependent mechanism and inhibited TGF-ß-induced EMT on no-polarized endometrial epithelial cells by inhibiting ERK/MAPK signalling. These results provide new insights into the link between the cellular and molecular mechanism for Metformin's antineoplastic activity in Pten-deficient endometrial cancers.


Assuntos
Antineoplásicos , Diabetes Mellitus Tipo 2 , Neoplasias do Endométrio , Metformina , Humanos , Feminino , Animais , Camundongos , Metformina/farmacologia , Metformina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fator de Crescimento Transformador beta/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias do Endométrio/patologia , Proliferação de Células
3.
Cell Mol Life Sci ; 80(10): 280, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684532

RESUMO

Nuclear Cyclin D1 (Ccnd1) is a main regulator of cell cycle progression and cell proliferation. Interestingly, Ccnd1 moves to the cytoplasm at the onset of differentiation in neuronal precursors. However, cytoplasmic functions and targets of Ccnd1 in post-mitotic neurons are unknown. Here we identify the α4 subunit of gamma-aminobutyric acid (GABA) type A receptors (GABAARs) as an interactor and target of Ccnd1-Cdk4. Ccnd1 binds to an intracellular loop in α4 and, together with Cdk4, phosphorylates the α4 subunit at threonine 423 and serine 431. These modifications upregulate α4 surface levels, increasing the response of α4-containing GABAARs, measured in whole-cell patch-clamp recordings. In agreement with this role of Ccnd1-Cdk4 in neuronal signalling, inhibition of Cdk4 or expression of the non-phosphorylatable α4 decreases synaptic and extra-synaptic currents in the hippocampus of newborn rats. Moreover, according to α4 functions in synaptic pruning, CCND1 knockout mice display an altered pattern of dendritic spines that is rescued by the phosphomimetic α4. Overall, our findings molecularly link Ccnd1-Cdk4 to GABAARs activity in the central nervous system and highlight a novel role for this G1 cyclin in neuronal signalling.


Assuntos
Ciclina D1 , Quinase 4 Dependente de Ciclina , Receptores de GABA-A , Animais , Camundongos , Ratos , Ciclina D1/genética , Ácido gama-Aminobutírico , Camundongos Knockout , Neurônios , Fosforilação , Receptores de GABA-A/genética , Quinase 4 Dependente de Ciclina/genética
4.
Adv Sci (Weinh) ; 10(32): e2303134, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37749866

RESUMO

Phosphatase and TENsin homolog (Pten) and p53 are two of the most frequently mutated tumor suppressor genes in endometrial cancer. However, the functional consequences and histopathological manifestation of concomitant p53 and Pten loss of function alterations in the development of endometrial cancer is still controversial. Here, it is demonstrated that simultaneous Pten and p53 deletion is sufficient to cause epithelial to mesenchymal transition phenotype in endometrial organoids. By a novel intravaginal delivery method using HIV1 trans-activator of transcription cell penetrating peptide fused with a Cre recombinase protein (TAT-Cre), local ablation of both p53 and Pten is achieved specifically in the uterus. These mice developed high-grade endometrial carcinomas and a high percentage of uterine carcinosarcomas resembling those found in humans. To further demonstrate that carcinosarcomas arise from epithelium, double Pten/p53 deficient epithelial cells are mixed with wild type stromal and myometrial cells and subcutaneously transplanted to Scid mice. All xenotransplants resulted in the development of uterine carcinosarcomas displaying high nuclear pleomorphism and metastatic potential. Accordingly, in vivo CRISPR/Cas9 disruption of Pten and p53 also triggered the development of metastatic carcinosarcomas. The results unfadingly demonstrate that simultaneous deletion of p53 and Pten in endometrial epithelial cells is enough to trigger epithelial to mesenchymal transition that is consistently translated to the formation of uterine carcinosarcomas in vivo.


Assuntos
Carcinossarcoma , Neoplasias do Endométrio , Neoplasias Uterinas , Humanos , Feminino , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Transição Epitelial-Mesenquimal , Sistemas CRISPR-Cas/genética , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia , Carcinossarcoma/genética , Carcinossarcoma/patologia
6.
Sci Rep ; 12(1): 14821, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050359

RESUMO

The extracellular matrix and the correct establishment of epithelial cell polarity plays a critical role in epithelial cell homeostasis and cell polarity. In addition, loss of tissue structure is a hallmark of carcinogenesis. In this study, we have addressed the role of extracellular matrix in the cellular responses to TGF-ß. It is well known that TGF-ß is a double-edged sword: it acts as a tumor suppressor in normal epithelial cells, but conversely has tumor-promoting effects in tumoral cells. However, the factors that determine cellular outcome in response to TGF-ß remain controversial. Here, we have demonstrated that the lack of extracellular matrix and consequent loss of cell polarity inhibits TGF-ß-induced apoptosis, observed when endometrial epithelial cells are polarized in presence of extracellular matrix. Rather, in absence of extracellular matrix, TGF-ß-treated endometrial epithelial cells display features of epithelial-to-mesenchymal transition. We have also investigated the molecular mechanism of such a switch in cellular response. On the one hand, we found that the lack of Matrigel results in increased AKT signaling which is sufficient to inhibit TGF-ß-induced apoptosis. On the other hand, we demonstrate that TGF-ß-induced epithelial-to-mesenchymal transition requires ERK and SMAD2/3 activation. In summary, we demonstrate that loss of cell polarity changes the pro-apoptotic function of TGF-ß to tumor-associated phenotype such as epithelial-to-mesenchymal transition. These results may be important for understanding the dual role of TGF-ß in normal versus tumoral cells.


Assuntos
Transição Epitelial-Mesenquimal , Matriz Extracelular , Fator de Crescimento Transformador beta , Apoptose/efeitos dos fármacos , Carcinogênese/metabolismo , Endométrio/metabolismo , Células Epiteliais , Matriz Extracelular/metabolismo , Feminino , Humanos , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia
7.
Cell Mol Life Sci ; 79(10): 514, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36098804

RESUMO

The Wolffian ducts (WD) are paired epithelial tubules central to the development of the mammalian genitourinary tract. Outgrowths from the WD known as the ureteric buds (UB) generate the collecting ducts of the kidney. Later during development, the caudal portion of the WD will form the vas deferens, epididymis and seminal vesicle in males, and will degenerate in females. While the genetic pathways controlling the development of the UB are firmly established, less is known about those governing development of WD portions caudal to the UB. Sprouty proteins are inhibitors of receptor tyrosine kinase (RTK) signaling in vivo. We have recently shown that homozygous mutation of a conserved tyrosine (Tyr53) of Spry1 results in UB defects indistinguishable from that of Spry1 null mice. Here, we show that heterozygosity for the Spry1 Y53A allele causes caudal WD developmental defects consisting of ectopically branched seminal vesicles in males and persistent WD in females, without affecting kidney development. Detailed analysis reveals that this phenotype also occurs in Spry1+/- mice but with a much lower penetrance, indicating that removal of tyrosine 53 generates a dominant negative mutation in vivo. Supporting this notion, concomitant deletion of one allele of Spry1 and Spry2 also recapitulates the genital phenotype of Spry1Y53A/+ mice with high penetrance. Mechanistically, we show that unlike the effects of Spry1 in kidney development, these caudal WD defects are independent of Ret signaling, but can be completely rescued by lowering the genetic dosage of Fgf10. In conclusion, mutation of tyrosine 53 of Spry1 generates a dominant negative allele that uncovers fine-tuning of caudal WD development by Sprouty genes.


Assuntos
Organogênese , Ductos Mesonéfricos , Animais , Feminino , Masculino , Mamíferos , Camundongos , Camundongos Knockout , Mutação/genética , Transdução de Sinais , Tirosina
8.
Cancers (Basel) ; 13(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34638474

RESUMO

TGF-ß has a dichotomous function, acting as tumor suppressor in premalignant cells but as a tumor promoter for cancerous cells. These contradictory functions of TGF-ß are caused by different cellular contexts, including both intracellular and environmental determinants. The TGF-ß/SMAD and the PI3K/PTEN/AKT signal transduction pathways have an important role in the regulation of epithelial cell homeostasis and perturbations in either of these two pathways' contributions to endometrial carcinogenesis. We have previously demonstrated that both PTEN and SMAD2/3 display tumor-suppressive functions in the endometrium, and genetic ablation of either gene results in sustained activation of PI3K/AKT signaling that suppresses TGF-ß-induced apoptosis and enhances cell proliferation of mouse endometrial cells. However, the molecular and cellular effects of PTEN deficiency on TGF-ß/SMAD2/3 signaling remain controversial. Here, using an in vitro and in vivo model of endometrial carcinogenesis, we have demonstrated that loss of PTEN leads to a constitutive SMAD2/3 nuclear translocation. To ascertain the function of nuclear SMAD2/3 downstream of PTEN deficiency, we analyzed the effects of double deletion PTEN and SMAD2/3 in mouse endometrial organoids. Double PTEN/SMAD2/3 ablation results in a further increase of cell proliferation and enlarged endometrial organoids compared to those harboring single PTEN, suggesting that nuclear translocation of SMAD2/3 constrains tumorigenesis induced by PTEN deficiency.

9.
J Am Soc Nephrol ; 30(8): 1398-1411, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31300484

RESUMO

BACKGROUND: Studies in mice suggest that perturbations of the GDNF-Ret signaling pathway are a major genetic cause of congenital anomalies of the kidney and urinary tract (CAKUT). Mutations in Sprouty1, an intracellular Ret inhibitor, results in supernumerary kidneys, megaureters, and hydronephrosis in mice. But the underlying molecular mechanisms involved and which structural domains are essential for Sprouty1 function are a matter of controversy, partly because studies have so far relied on ectopic overexpression of the gene in cell lines. A conserved N-terminal tyrosine has been frequently, but not always, identified as critical for the function of Sprouty1 in vitro. METHODS: We generated Sprouty1 knockin mice bearing a tyrosine-to-alanine substitution in position 53, corresponding to the conserved N-terminal tyrosine of Sprouty1. We characterized the development of the genitourinary systems in these mice via different methods, including the use of reporter mice expressing EGFP from the Ret locus, and whole-mount cytokeratin staining. RESULTS: Mice lacking this tyrosine grow ectopic ureteric buds that will ultimately form supernumerary kidneys, a phenotype indistinguishable to that of Sprouty1 knockout mice. Sprouty1 knockin mice also present megaureters and vesicoureteral reflux, caused by failure of ureters to separate from Wolffian ducts and migrate to their definitive position. CONCLUSIONS: Tyrosine 53 is absolutely necessary for Sprouty1 function during genitourinary development in mice.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Tirosina/genética , Sistema Urinário/embriologia , Alanina/genética , Animais , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Proteínas de Fluorescência Verde/metabolismo , Queratinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação , Fenótipo , Fosforilação , Domínios Proteicos , Proteínas Proto-Oncogênicas c-ret/genética , Ureter/anormalidades , Sistema Urinário/crescimento & desenvolvimento , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Ductos Mesonéfricos/metabolismo
10.
Sci Rep ; 8(1): 3703, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29487336

RESUMO

The Fibronectin Leucine-Rich Transmembrane protein 2 (FLRT2) has been implicated in several hormone -and sex-dependent physiological and pathological processes (including chondrogenesis, menarche and breast cancer); is known to regulate developmental synapses formation, and is expressed in the hippocampus, a brain structure central for learning and memory. However, the role of FLRT2 in the adult hippocampus and its relevance in sex-dependent brain functions remains unknown. We here used adult single-allele FLRT2 knockout (FLRT2+/-) mice and behavioral, electrophysiological, and molecular/biological assays to examine the effects of FLRT2 haplodeficiency on synaptic plasticity and hippocampus-dependent learning and memory. Female and male FLRT2+/- mice presented morphological features (including body masses, brain shapes/weights, and brain macroscopic cytoarchitectonic organization), indistinguishable from their wild type counterparts. However, in vivo examinations unveiled enhanced hippocampus-dependent spatial memory recall in female FLRT2+/- animals, concomitant with augmented hippocampal synaptic plasticity and decreased levels of the glutamate transporter EAAT2 and beta estrogen receptors. In contrast, male FLRT2+/- animals exhibited deficient memory recall and decreased alpha estrogen receptor levels. These observations propose that FLRT2 can regulate memory functions in the adulthood in a sex-specific manner and might thus contribute to further research on the mechanisms linking sexual dimorphism and cognition.


Assuntos
Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Plasticidade Neuronal/fisiologia , Memória Espacial/fisiologia , Animais , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Transportador 2 de Aminoácido Excitatório , Feminino , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Plasticidade Neuronal/genética , Fatores Sexuais
11.
Curr Biol ; 24(5): 494-508, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24560577

RESUMO

BACKGROUND: Guidance molecules are normally presented to cells in an overlapping fashion; however, little is known about how their signals are integrated to control the formation of neural circuits. In the thalamocortical system, the topographical sorting of distinct axonal subpopulations relies on the emergent cooperation between Slit1 and Netrin-1 guidance cues presented by intermediate cellular targets. However, the mechanism by which both cues interact to drive distinct axonal responses remains unknown. RESULTS: Here, we show that the attractive response to the guidance cue Netrin-1 is controlled by Slit/Robo1 signaling and by FLRT3, a novel coreceptor for Robo1. While thalamic axons lacking FLRT3 are insensitive to Netrin-1, thalamic axons containing FLRT3 can modulate their Netrin-1 responsiveness in a context-dependent manner. In the presence of Slit1, both Robo1 and FLRT3 receptors are required to induce Netrin-1 attraction by the upregulation of surface DCC through the activation of protein kinase A. Finally, the absence of FLRT3 produces defects in axon guidance in vivo. CONCLUSIONS: These results highlight a novel mechanism by which interactions between limited numbers of axon guidance cues can multiply the responses in developing axons, as required for proper axonal tract formation in the mammalian brain.


Assuntos
Axônios/fisiologia , Glicoproteínas de Membrana/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Receptor DCC , Regulação da Expressão Gênica no Desenvolvimento , Técnicas In Vitro , Glicoproteínas de Membrana/genética , Camundongos Mutantes , Camundongos Transgênicos , Mutação , Fatores de Crescimento Neural/genética , Proteínas do Tecido Nervoso/genética , Netrina-1 , Técnicas de Cultura de Órgãos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos/genética , Tálamo/citologia , Tálamo/crescimento & desenvolvimento , Tálamo/fisiologia , Proteínas Supressoras de Tumor/genética , Proteínas Roundabout
12.
Cell Cycle ; 12(15): 2510-7, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23839032

RESUMO

The function of Cyclin D1 (CycD1) has been widely studied in the cell nucleus as a regulatory subunit of the cyclin-dependent kinases Cdk4/6 involved in the control of proliferation and development in mammals. CycD1 has been also localized in the cytoplasm, where its function nevertheless is poorly characterized. In this work we have observed that in normal skin as well as in primary cultures of human keratinocytes, cytoplasmic localization of CycD1 correlated with the degree of differentiation of the keratinocyte. In these conditions, CycD1 co-localized in cytoplasmic foci with exocyst components (Sec6) and regulators (RalA), and with ß1 integrin, suggesting a role for CycD1 in the regulation of keratinocyte adhesion during differentiation. Consistent with this hypothesis, CycD1 overexpression increased ß1 integrin recycling and drastically reduced the ability of keratinocytes to adhere to the extracellular matrix. We propose that localization of CycD1 in the cytoplasm during skin differentiation could be related to the changes in detachment ability of keratinocytes committed to differentiation.


Assuntos
Adesão Celular , Diferenciação Celular , Ciclina D1/metabolismo , Queratinócitos/metabolismo , Pele/citologia , Células Cultivadas , Citoplasma/metabolismo , Matriz Extracelular/metabolismo , Humanos , Integrina beta1/metabolismo , Queratinócitos/fisiologia , Transporte Proteico , Proteínas de Transporte Vesicular/metabolismo
13.
Stem Cells ; 30(9): 1863-74, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22761013

RESUMO

Self-renewal and differentiation of stem cell depend on a dynamic interplay of cell-extrinsic and -intrinsic regulators. However, how stem cells perceive the right amount of signal and at the right time to undergo a precise developmental program remains poorly understood. The cell surface proteins Glypicans act as gatekeepers of environmental signals to modulate their perception by target cells. Here, we show that one of these, Glypican4 (Gpc4), is specifically required to maintain the self-renewal potential of mouse embryonic stem cells (ESCs) and to fine tune cell lineage commitment. Notably, Gpc4-mutant ESCs contribute to all embryonic cell lineages when injected in blastocyts but lose their intrinsic tumorigenic properties after implantation into nude mice. Therefore, our molecular and functional studies reveal that Gpc4 maintains distinct stemness features. Moreover, we provide evidence that self-renewal and lineage commitment of different stem cell types is fine tuned by Gpc4 activity by showing that Gpc4 is required for the maintenance of adult neural stem cell fate in vivo. Mechanistically, Gpc4 regulates self-renewal of ESCs by modulating Wnt/ß-catenin signaling activities. Thus, our findings establish that Gpc4 acts at the interface of extrinsic and intrinsic signal regulation to fine tune stem cell fate. Moreover, the ability to uncouple pluripotent stem cell differentiation from tumorigenic potential makes Gpc4 as a promising target for cell-based regenerative therapies.


Assuntos
Transformação Celular Neoplásica/metabolismo , Células-Tronco Embrionárias/metabolismo , Glipicanas/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Células-Tronco Pluripotentes/metabolismo , Animais , Diferenciação Celular , Processos de Crescimento Celular/fisiologia , Transformação Celular Neoplásica/patologia , Células Cultivadas , Células-Tronco Embrionárias/citologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Células-Tronco Pluripotentes/citologia , Transdução de Sinais
14.
EMBO J ; 30(14): 2920-33, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21673655

RESUMO

Netrin-1 induces repulsive axon guidance by binding to the mammalian Unc5 receptor family (Unc5A-Unc5D). Mouse genetic analysis of selected members of the Unc5 family, however, revealed essential functions independent of Netrin-1, suggesting the presence of other ligands. Unc5B was recently shown to bind fibronectin and leucine-rich transmembrane protein-3 (FLRT3), although the relevance of this interaction for nervous system development remained unclear. Here, we show that the related Unc5D receptor binds specifically to another FLRT protein, FLRT2. During development, FLRT2/3 ectodomains (ECDs) are shed from neurons and act as repulsive guidance molecules for axons and somata of Unc5-positive neurons. In the developing mammalian neocortex, Unc5D is expressed by neurons in the subventricular zone (SVZ), which display delayed migration to the FLRT2-expressing cortical plate (CP). Deletion of either FLRT2 or Unc5D causes a subset of SVZ-derived neurons to prematurely migrate towards the CP, whereas overexpression of Unc5D has opposite effects. Hence, the shed FLRT2 and FLRT3 ECDs represent a novel family of chemorepellents for Unc5-positive neurons and FLRT2/Unc5D signalling modulates cortical neuron migration.


Assuntos
Glicoproteínas de Membrana/fisiologia , Neurônios/metabolismo , Receptores de Superfície Celular/fisiologia , Animais , Axônios/metabolismo , Movimento Celular , Células Cultivadas , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Immunoblotting , Integrases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Crescimento Neural/metabolismo , Receptores de Netrina , Netrina-1 , Neurônios/citologia , Ligação Proteica , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo
15.
Dev Neurobiol ; 67(13): 1777-88, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17659595

RESUMO

Programmed cell death is a genuine developmental process of the nervous system, affecting not only projecting neurons but also proliferative neuroepithelial cells and young neuroblasts. The embryonic chick retina has been employed to correlate in vivo and in vitro studies on cell death regulation. We characterize here the role of two major signaling pathways, PI3K-Akt and MEK-ERK, in controlled retinal organotypic cultures from embryonic day 5 (E5) and E9, when cell death preferentially affects proliferating neuroepithelial cells and ganglion cell neurons, respectively. The relative density of programmed cell death in vivo was much higher in the proliferative and early neurogenic stages of retinal development (E3-E5) than during neuronal maturation and synaptogenesis (E8-E19). In organotypic cultures from E5 and E9 retinas, insulin, as the only growth factor added, was able to completely prevent cell death induced by growth factor deprivation. Insulin activated both the PI3K-Akt and the MEK-ERK pathways. Insulin survival effect, however, was differentially blocked at the two stages. At E5, the effect was blocked by MEK inhibitors, whereas at E9 it was blocked by PI3K inhibitors. The cells which were found to be dependent on insulin activation of the MEK-ERK pathway at E5 were mostly proliferative neuroepithelial cells. These observations support a remarkable specificity in the regulation of early neural cell death.


Assuntos
Apoptose/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Retina/embriologia , Animais , Western Blotting , Células Cultivadas , Embrião de Galinha , Desenvolvimento Embrionário , Ativação Enzimática/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Insulina/farmacologia , MAP Quinase Quinase Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Recombinantes/farmacologia
16.
J Neurochem ; 88(2): 422-33, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14690530

RESUMO

The tyrosine kinase receptors for the neurotrophins (Trk) are a family of transmembrane receptors that regulate the differentiation and survival of different neuronal populations. Neurotrophin binding to Trk leads to the activation of several signalling pathways including a rapid, but moderate, increase in intracellular calcium levels. We have previously described the role of calcium and its sensor protein, calmodulin, in Trk-activated intracellular pathways. Here we demonstrate that calmodulin is able to precipitate TrkA from PC12 cell lysates. Using recombinant GST-fusion proteins containing the complete intracellular domain of TrkA, or fragments of this region, we show that calmodulin binds directly to the C-terminal domain of TrkA in a Ca2+-dependent manner. We have also co-immunoprecipitated endogenous Trk and calmodulin in primary cultures of cortical neurones. Moreover, we provide evidence that calmodulin is involved in the regulation of TrkA processing in PC12 cells. Calmodulin inhibition results in the generation of a TrkA-derived p41 fragment from the cytosolic portion of the protein. This fragment is autophosphorylated in tyrosines and can recruit PLCgamma and Shc adaptor proteins. These results suggest that calmodulin binding to Trk may be important for the regulation of Trk intracellular localization and cleavage.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptor trkA , Animais , Sítios de Ligação/fisiologia , Cálcio/metabolismo , Células Cultivadas , Humanos , Células PC12 , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA