Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 78(21-22): 6963-6978, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34586443

RESUMO

The endogenous chemokines CCL19 and CCL21 signal via their common receptor CCR7. CCL21 is the main lymph node homing chemokine, but a weak chemo-attractant compared to CCL19. Here we show that the 41-amino acid positively charged peptide, released through C-terminal cleavage of CCL21, C21TP, boosts the immune cell recruiting activity of CCL21 by up to 25-fold and the signaling activity via CCR7 by ~ 100-fold. Such boosting is unprecedented. Despite the presence of multiple basic glycosaminoglycan (GAG) binding motifs, C21TP boosting of CCL21 signaling does not involve interference with GAG mediated cell-surface retention. Instead, boosting is directly dependent on O-glycosylations in the CCR7 N-terminus. As dictated by the two-step binding model, the initial chemokine binding involves interaction of the chemokine fold with the receptor N-terminus, followed by insertion of the chemokine N-terminus deep into the receptor binding pocket. Our data suggest that apart from a role in initial chemokine binding, the receptor N-terminus also partakes in a gating mechanism, which could give rise to a reduced ligand activity, presumably through affecting the ligand positioning. Based on experiments that support a direct interaction of C21TP with the glycosylated CCR7 N-terminus, we propose that electrostatic interactions between the positively charged peptide and sialylated O-glycans in CCR7 N-terminus may create a more accessible version of the receptor and thus guide chemokine docking to generate a more favorable chemokine-receptor interaction, giving rise to the peptide boosting effect.


Assuntos
Quimiocina CCL21/metabolismo , Células Dendríticas/metabolismo , Linfonodos/metabolismo , Receptores CCR7/metabolismo , Receptores de Retorno de Linfócitos/metabolismo , Transdução de Sinais/fisiologia , Animais , Células CHO , Células Cultivadas , Cricetulus , Glicosilação , Humanos , Ligantes , Peptídeos/metabolismo , Ligação Proteica/fisiologia , Eletricidade Estática
2.
Nat Commun ; 10(1): 2889, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253831

RESUMO

The sinus node is a collection of highly specialised cells constituting the heart's pacemaker. The molecular underpinnings of its pacemaking abilities are debated. Using high-resolution mass spectrometry, we here quantify >7,000 proteins from sinus node and neighbouring atrial muscle. Abundances of 575 proteins differ between the two tissues. By performing single-nucleus RNA sequencing of sinus node biopsies, we attribute measured protein abundances to specific cell types. The data reveal significant differences in ion channels responsible for the membrane clock, but not in Ca2+ clock proteins, suggesting that the membrane clock underpins pacemaking. Consistently, incorporation of ion channel expression differences into a biophysically-detailed atrial action potential model result in pacemaking and a sinus node-like action potential. Combining our quantitative proteomics data with computational modeling, we estimate ion channel copy numbers for sinus node myocytes. Our findings provide detailed insights into the unique molecular make-up of the cardiac pacemaker.


Assuntos
Relógios Biológicos/fisiologia , Peptídeos/química , Peptídeos/metabolismo , Proteômica , Nó Sinoatrial/metabolismo , Transcriptoma , Potenciais de Ação , Animais , Cromatografia Líquida , Regulação da Expressão Gênica/fisiologia , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/genética , Espectrometria de Massas em Tandem
3.
FASEB J ; 26(11): 4445-57, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22815383

RESUMO

Rearrangement of the skin during wound healing depends on plasmin and plasminogen, which serve to degrade fibrin depositions in the provisional matrix and thereby facilitate keratinocyte migration. In the current study, we investigated whether plasmin and plasminogen likewise played a role during the development of skin cancer. To test this, we set up a chemically induced skin tumor model in a cohort of mice and found that skin tumor growth in Plg(-/-) male mice was reduced by 52% compared with wild-type controls. Histological analyses suggested that the growth-restricting effect of plasminogen deficiency was due to thrombosis and lost patency of the tumor vasculature, resulting in tumor necrosis. The connection between plasmin-dependent fibrinolysis, vascular patency, and tumor growth was further substantiated as the effect of plasminogen deficiency on tumor growth could be reverted by superimposing heterozygous fibrinogen deficiency on Plg(-/-) mice. Tumors derived from these Fib(-/+);Plg(-/-) mice displayed a significantly decreased level of tumor thrombosis compared with Plg(-/-) mice. In summary, these data indicate that plasmin-driven fibrinolysis facilitates tumor growth by maintaining patency of the tumor vasculature.


Assuntos
Fibrinolisina/metabolismo , Fibrinólise/fisiologia , Neoplasias Cutâneas/patologia , Animais , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Feminino , Fibrina/genética , Fibrina/metabolismo , Fibrinogênio/genética , Fibrinogênio/metabolismo , Fibrinolisina/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Laminina/genética , Laminina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/metabolismo , Ovariectomia , Fatores Sexuais , Neoplasias Cutâneas/metabolismo , Trombose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA