Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37371498

RESUMO

Polyamine homeostasis is disturbed in several human diseases, including cancer, which is hallmarked by increased intracellular polyamine levels and an upregulated polyamine transport system (PTS). Thus far, the polyamine transporters contributing to the elevated levels of polyamines in cancer cells have not yet been described, despite the fact that polyamine transport inhibitors are considered for cancer therapy. Here, we tested whether the upregulation of candidate polyamine transporters of the P5B transport ATPase family is responsible for the increased PTS in the well-studied breast cancer cell line MCF7 compared to the non-tumorigenic epithelial breast cell line MCF10A. We found that MCF7 cells presented elevated expression of a previously uncharacterized P5B-ATPase, ATP13A4, which was responsible for the elevated polyamine uptake activity. Furthermore, MCF7 cells were more sensitive to polyamine cytotoxicity, as demonstrated by cell viability, cell death and clonogenic assays. Importantly, the overexpression of ATP13A4 WT in MCF10A cells induced a MCF7 polyamine phenotype, with significantly higher uptake of BODIPY-labeled polyamines and increased sensitivity to polyamine toxicity. In conclusion, we established ATP13A4 as a new polyamine transporter in the human PTS and showed that ATP13A4 may play a major role in the increased polyamine uptake of breast cancer cells. ATP13A4 therefore emerges as a candidate therapeutic target for anticancer drugs that block the PTS.


Assuntos
Neoplasias da Mama , Poliaminas , Feminino , Humanos , Adenosina Trifosfatases/genética , Transporte Biológico , Neoplasias da Mama/metabolismo , Células MCF-7 , Proteínas de Membrana Transportadoras/metabolismo , Poliaminas/metabolismo , Regulação para Cima
2.
Biomolecules ; 13(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36830711

RESUMO

Cells acquire polyamines putrescine (PUT), spermidine (SPD) and spermine (SPM) via the complementary actions of polyamine uptake and synthesis pathways. The endosomal P5B-type ATPases ATP13A2 and ATP13A3 emerge as major determinants of mammalian polyamine uptake. Our biochemical evidence shows that fluorescently labeled polyamines are genuine substrates of ATP13A2. They can be used to measure polyamine uptake in ATP13A2- and ATP13A3-dependent cell models resembling radiolabeled polyamine uptake. We further report that ATP13A3 enables faster and stronger cellular polyamine uptake than does ATP13A2. We also compared the uptake of new green fluorescent PUT, SPD and SPM analogs using different coupling strategies (amide, triazole or isothiocyanate) and fluorophores (symmetrical BODIPY, BODIPY-FL and FITC). ATP13A2 promotes the uptake of various SPD and SPM analogs, whereas ATP13A3 mainly stimulates the uptake of PUT and SPD conjugates. However, the polyamine linker and coupling position on the fluorophore impacts the transport capacity, whereas replacing the fluorophore affects polyamine selectivity. The highest uptake in ATP13A2 or ATP13A3 cells is observed with BODIPY-FL-amide conjugated to SPD, whereas BODIPY-PUT analogs are specifically taken up via ATP13A3. We found that P5B-type ATPase isoforms transport fluorescently labeled polyamine analogs with a distinct structure-activity relationship (SAR), suggesting that isoform-specific polyamine probes can be designed.


Assuntos
Poliaminas , Espermidina , Animais , Poliaminas/metabolismo , Espermidina/metabolismo , Compostos de Boro , Espermina/metabolismo , Putrescina/metabolismo , Transporte Biológico , Mamíferos/metabolismo , Corantes Fluorescentes , Adenosina Trifosfatases/metabolismo
3.
Biochim Biophys Acta Mol Cell Res ; 1869(12): 119354, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36064065

RESUMO

Polyamines (PAs) are physiologically relevant molecules that are ubiquitous in all organisms. The vitality of PAs to the healthy functioning of a cell is due to their polycationic nature causing them to interact with a vast plethora of cellular players and partake in numerous cellular pathways. Naturally, the homeostasis of such essential molecules is tightly regulated in a strictly controlled interplay between intracellular synthesis and degradation, uptake from and secretion to the extracellular compartment, as well as intracellular trafficking. Not surprisingly, dysregulated PA homeostasis and signaling are implicated in multiple disorders, ranging from cancer to neurodegeneration; leading many to propose rectifying the PA balance as a potential therapeutic strategy. Despite being well characterized in bacteria, fungi and plants, the molecular identity and properties of the PA transporters in animals are poorly understood. This review brings together the current knowledge of the cellular function of the mammalian PA transport system (PTS). We will focus on the role of P5B-ATPases ATP13A2-5 which are PA transporters in the endosomal system that have emerged as key players in cellular PA uptake and organelle homeostasis. We will discuss recent breakthroughs on their biochemical and structural properties as well as their implications for disease and therapy.


Assuntos
Adenosina Trifosfatases , Poliaminas , Adenosina Trifosfatases/metabolismo , Animais , Transporte Biológico , Endossomos/metabolismo , Mamíferos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Poliaminas/metabolismo
4.
J Biol Chem ; 296: 100182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33310703

RESUMO

Polyamines, such as putrescine, spermidine, and spermine, are physiologically important polycations, but the transporters responsible for their uptake in mammalian cells remain poorly characterized. Here, we reveal a new component of the mammalian polyamine transport system using CHO-MG cells, a widely used model to study alternative polyamine uptake routes and characterize polyamine transport inhibitors for therapy. CHO-MG cells present polyamine uptake deficiency and resistance to a toxic polyamine biosynthesis inhibitor methylglyoxal bis-(guanylhydrazone) (MGBG), but the molecular defects responsible for these cellular characteristics remain unknown. By genome sequencing of CHO-MG cells, we identified mutations in an unexplored gene, ATP13A3, and found disturbed mRNA and protein expression. ATP13A3 encodes for an orphan P5B-ATPase (ATP13A3), a P-type transport ATPase that represents a candidate polyamine transporter. Interestingly, ATP13A3 complemented the putrescine transport deficiency and MGBG resistance of CHO-MG cells, whereas its knockdown in WT cells induced a CHO-MG phenotype demonstrated as a decrease in putrescine uptake and MGBG sensitivity. Taken together, our findings identify ATP13A3, which has been previously genetically linked with pulmonary arterial hypertension, as a major component of the mammalian polyamine transport system that confers sensitivity to MGBG.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Poliaminas/metabolismo , Putrescina/metabolismo , Adenosina Trifosfatases/genética , Animais , Transporte Biológico , Células CHO , Cricetinae , Cricetulus , Inibidores Enzimáticos/farmacologia , Mitoguazona/farmacologia , Mutação , Sequenciamento Completo do Genoma/métodos
5.
Proc Natl Acad Sci U S A ; 117(49): 31198-31207, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229544

RESUMO

Recessive loss-of-function mutations in ATP13A2 (PARK9) are associated with a spectrum of neurodegenerative disorders, including Parkinson's disease (PD). We recently revealed that the late endo-lysosomal transporter ATP13A2 pumps polyamines like spermine into the cytosol, whereas ATP13A2 dysfunction causes lysosomal polyamine accumulation and rupture. Here, we investigate how ATP13A2 provides protection against mitochondrial toxins such as rotenone, an environmental PD risk factor. Rotenone promoted mitochondrial-generated superoxide (MitoROS), which was exacerbated by ATP13A2 deficiency in SH-SY5Y cells and patient-derived fibroblasts, disturbing mitochondrial functionality and inducing toxicity and cell death. Moreover, ATP13A2 knockdown induced an ATF4-CHOP-dependent stress response following rotenone exposure. MitoROS and ATF4-CHOP were blocked by MitoTEMPO, a mitochondrial antioxidant, suggesting that the impact of ATP13A2 on MitoROS may relate to the antioxidant properties of spermine. Pharmacological inhibition of intracellular polyamine synthesis with α-difluoromethylornithine (DFMO) also increased MitoROS and ATF4 when ATP13A2 was deficient. The polyamine transport activity of ATP13A2 was required for lowering rotenone/DFMO-induced MitoROS, whereas exogenous spermine quenched rotenone-induced MitoROS via ATP13A2. Interestingly, fluorescently labeled spermine uptake in the mitochondria dropped as a consequence of ATP13A2 transport deficiency. Our cellular observations were recapitulated in vivo, in a Caenorhabditis elegans strain deficient in the ATP13A2 ortholog catp-6 These animals exhibited a basal elevated MitoROS level, mitochondrial dysfunction, and enhanced stress response regulated by atfs-1, the C. elegans ortholog of ATF4, causing hypersensitivity to rotenone, which was reversible with MitoTEMPO. Together, our study reveals a conserved cell protective pathway that counters mitochondrial oxidative stress via ATP13A2-mediated lysosomal spermine export.


Assuntos
Fator 4 Ativador da Transcrição/genética , Adenosina Trifosfatases/genética , Proteínas de Caenorhabditis elegans/genética , Mitocôndrias/genética , ATPases Translocadoras de Prótons/genética , Fatores de Transcrição/genética , Animais , Caenorhabditis elegans , Eflornitina/farmacologia , Fibroblastos/efeitos dos fármacos , Lisossomos/genética , Lisossomos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Mutação/genética , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/genética , Doença de Parkinson/patologia , Poliaminas/metabolismo , Rotenona/farmacologia , Espermina/metabolismo , Fator de Transcrição CHOP/genética
6.
Acta Neuropathol ; 139(6): 1001-1024, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32172343

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative brain disease presenting with a variety of motor and non-motor symptoms, loss of midbrain dopaminergic neurons in the substantia nigra pars compacta and the occurrence of α-synuclein-positive Lewy bodies in surviving neurons. Here, we performed whole exome sequencing in 52 early-onset PD patients and identified 3 carriers of compound heterozygous mutations in the ATP10B P4-type ATPase gene. Genetic screening of a Belgian PD and dementia with Lewy bodies (DLB) cohort identified 4 additional compound heterozygous mutation carriers (6/617 PD patients, 0.97%; 1/226 DLB patients, 0.44%). We established that ATP10B encodes a late endo-lysosomal lipid flippase that translocates the lipids glucosylceramide (GluCer) and phosphatidylcholine (PC) towards the cytosolic membrane leaflet. The PD associated ATP10B mutants are catalytically inactive and fail to provide cellular protection against the environmental PD risk factors rotenone and manganese. In isolated cortical neurons, loss of ATP10B leads to general lysosomal dysfunction and cell death. Impaired lysosomal functionality and integrity is well known to be implicated in PD pathology and linked to multiple causal PD genes and genetic risk factors. Our results indicate that recessive loss of function mutations in ATP10B increase risk for PD by disturbed lysosomal export of GluCer and PC. Both ATP10B and glucocerebrosidase 1, encoded by the PD risk gene GBA1, reduce lysosomal GluCer levels, emerging lysosomal GluCer accumulation as a potential PD driver.


Assuntos
Adenosina Trifosfatases/genética , Glucosilceramidas/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana Transportadoras/genética , Mutação/genética , Doença de Parkinson/genética , Idoso , Idoso de 80 Anos ou mais , Neurônios Dopaminérgicos/metabolismo , Feminino , Glucosilceramidase/genética , Glucosilceramidas/genética , Humanos , Corpos de Lewy/patologia , Lisossomos/genética , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo
7.
Nature ; 578(7795): 419-424, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31996848

RESUMO

ATP13A2 (PARK9) is a late endolysosomal transporter that is genetically implicated in a spectrum of neurodegenerative disorders, including Kufor-Rakeb syndrome-a parkinsonism with dementia1-and early-onset Parkinson's disease2. ATP13A2 offers protection against genetic and environmental risk factors of Parkinson's disease, whereas loss of ATP13A2 compromises lysosomes3. However, the transport function of ATP13A2 in lysosomes remains unclear. Here we establish ATP13A2 as a lysosomal polyamine exporter that shows the highest affinity for spermine among the polyamines examined. Polyamines stimulate the activity of purified ATP13A2, whereas ATP13A2 mutants that are implicated in disease are functionally impaired to a degree that correlates with the disease phenotype. ATP13A2 promotes the cellular uptake of polyamines by endocytosis and transports them into the cytosol, highlighting a role for endolysosomes in the uptake of polyamines into cells. At high concentrations polyamines induce cell toxicity, which is exacerbated by ATP13A2 loss due to lysosomal dysfunction, lysosomal rupture and cathepsin B activation. This phenotype is recapitulated in neurons and nematodes with impaired expression of ATP13A2 or its orthologues. We present defective lysosomal polyamine export as a mechanism for lysosome-dependent cell death that may be implicated in neurodegeneration, and shed light on the molecular identity of the mammalian polyamine transport system.


Assuntos
Lisossomos/metabolismo , Poliaminas/metabolismo , ATPases Translocadoras de Prótons/deficiência , ATPases Translocadoras de Prótons/genética , Animais , Biocatálise , Transporte Biológico , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Catepsina B/metabolismo , Citosol/metabolismo , Modelos Animais de Doenças , Endocitose , Humanos , Lisossomos/patologia , Camundongos , Mutação , Neurônios/metabolismo , Fenótipo , Poliaminas/toxicidade , ATPases Translocadoras de Prótons/metabolismo , Espermidina/metabolismo , Espermina/metabolismo
8.
J Biol Chem ; 294(19): 7878-7891, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30923126

RESUMO

The Ca2+/Mn2+ transport ATPases 1a and 2 (SPCA1a/2) are closely related to the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) and are implicated in breast cancer and Hailey-Hailey skin disease. Here, we purified the human SPCA1a/2 isoforms from a yeast recombinant expression system and compared their biochemical properties after reconstitution. We observed that the purified SPCA1a displays a lower Ca2+ affinity and slightly lower Mn2+ affinity than SPCA2. Remarkably, the turnover rates of SPCA1a in the presence of Mn2+ and SPCA2 incubated with Ca2+ and Mn2+ were comparable, whereas the turnover rate of SPCA1a in Ca2+ was 2-fold higher. Moreover, we noted an unusual biphasic activation curve for the SPCA1a ATPase and autophosphorylation activity, not observed with SPCA2. We also found that the biphasic pattern and low apparent ion affinity of SPCA1a critically depends on ATP concentration. We further show that the specific properties of SPCA1a at least partially depend on an N-terminal EF-hand-like motif, which is present only in the SPCA1a isoform and absent in SPCA2. This motif binds Ca2+, and its mutation lowered the Ca2+ turnover rate relative to that of Mn2+, increased substrate affinity, and reduced the level of biphasic activation of SPCA1a. A biochemical analysis indicated that Ca2+ binding to the N-terminal EF-hand-like motif promotes the activity of SPCA1a by facilitating autophosphorylation. We propose that this regulation may be physiologically relevant in cells with a high Ca2+ load, such as mammary gland cells during lactation, or in cells with a low ATP content, such as keratinocytes.


Assuntos
ATPases Transportadoras de Cálcio/química , Cálcio/química , Motivos de Aminoácidos , Cálcio/metabolismo , ATPases Transportadoras de Cálcio/genética , ATPases Transportadoras de Cálcio/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Fosforilação/genética , Domínios Proteicos
9.
PLoS One ; 13(3): e0193228, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29505581

RESUMO

Several human P5-type transport ATPases are implicated in neurological disorders, but little is known about their physiological function and properties. Here, we investigated the relationship between the five mammalian P5 isoforms ATP13A1-5 in a comparative study. We demonstrated that ATP13A1-4 isoforms undergo autophosphorylation, which is a hallmark P-type ATPase property that is required for substrate transport. A phylogenetic analysis of P5 sequences revealed that ATP13A1 represents clade P5A, which is highly conserved between fungi and animals with one member in each investigated species. The ATP13A2-5 isoforms belong to clade P5B and diversified from one isoform in fungi and primitive animals to a maximum of four in mammals by successive gene duplication events in vertebrate evolution. We revealed that ATP13A1 localizes in the endoplasmic reticulum (ER) and experimentally demonstrate that ATP13A1 likely contains 12 transmembrane helices. Conversely, ATP13A2-5 isoforms reside in overlapping compartments of the endosomal system and likely contain 10 transmembrane helices, similar to what was demonstrated earlier for ATP13A2. ATP13A1 complemented a deletion of the yeast P5A ATPase SPF1, while none of ATP13A2-5 could complement either the loss of SPF1 or that of the single P5B ATPase YPK9 in yeast. Thus, ATP13A1 carries out a basic ER function similar to its yeast counterpart Spf1p that plays a role in ER related processes like protein folding and processing. ATP13A2-5 isoforms diversified in mammals and are expressed in the endosomal system where they may have evolved novel complementary or partially redundant functions. While most P5-type ATPases are widely expressed, some P5B-type ATPases (ATP13A4 and ATP13A5) display a more limited tissue distribution in the brain and epithelial glandular cells, where they may exert specialized functions. At least some P5B isoforms are of vital importance for the nervous system, since ATP13A2 and ATP13A4 are linked to respectively Parkinson disease and autism spectrum disorders.


Assuntos
Evolução Molecular , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Fosforilação , Filogenia , Conformação Proteica em alfa-Hélice , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico , ATPases Translocadoras de Prótons/química
10.
Biochim Biophys Acta Mol Cell Res ; 1865(6): 855-862, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29555205

RESUMO

The Secretory Pathway Ca2+ ATPases SPCA1 and SPCA2 transport Ca2+ and Mn2+ into the Golgi and Secretory Pathway. SPCA2 mediates store-independent Ca2+ entry (SICE) via STIM1-independent activation of Orai1, inducing constitutive Ca2+ influx in mammary epithelial cells during lactation. Here, we show that like SPCA2, also the overexpression of the ubiquitous SPCA1 induces cytosolic Ca2+ influx, which is abolished by Orai1 knockdown and occurs independently of STIM1. This process elevates the Ca2+ concentration in the cytosol and in the non-endoplasmic reticulum (ER) stores, pointing to a functional coupling between Orai1 and SPCA1. In agreement with this, we demonstrate via Total Internal Reflection Fluorescence microscopy that Orai1 and SPCA1a co-localize near the plasma membrane. Interestingly, SPCA1 overexpression also induces Golgi swelling, which coincides with translocation of the transcription factor TFE3 to the nucleus, a marker of Golgi stress. The induction of Golgi stress depends on a combination of SPCA1 activity and SICE, suggesting a role for the increased Ca2+ level in the non-ER stores. Finally, we tested whether impaired SPCA1a/Orai1 coupling may be implicated in the skin disorder Hailey-Hailey disease (HHD), which is caused by SPCA1 loss-of-function. We identified HHD-associated SPCA1a mutations that impair either the Ca2+ transport function, Orai1 activation, or both, while all mutations affect the Ca2+ content of the non-ER stores. Thus, the functional coupling between SPCA1 and Orai1 increases cytosolic and intraluminal Ca2+ levels, representing a novel mechanism of SICE that may be affected in HHD.


Assuntos
Sinalização do Cálcio , ATPases Transportadoras de Cálcio/metabolismo , Estresse do Retículo Endoplasmático , Complexo de Golgi/metabolismo , Proteína ORAI1/metabolismo , Pênfigo Familiar Benigno/metabolismo , ATPases Transportadoras de Cálcio/genética , Complexo de Golgi/genética , Complexo de Golgi/patologia , Células HEK293 , Humanos , Proteína ORAI1/genética , Pênfigo Familiar Benigno/genética , Pênfigo Familiar Benigno/patologia
11.
J Biol Chem ; 292(17): 6938-6951, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28264934

RESUMO

The Golgi/secretory pathway Ca2+/Mn2+-transport ATPase (SPCA1a) is implicated in breast cancer and Hailey-Hailey disease. Here, we purified recombinant human SPCA1a from Saccharomyces cerevisiae and measured Ca2+-dependent ATPase activity following reconstitution in proteoliposomes. The purified SPCA1a displays a higher apparent Ca2+ affinity and a lower maximal turnover rate than the purified sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA1a). The lipids cholesteryl hemisuccinate, linoleamide/oleamide, and phosphatidylethanolamine inhibit and phosphatidic acid and sphingomyelin enhance SPCA1a activity. Moreover, SPCA1a is blocked by micromolar concentrations of the commonly used SERCA1a inhibitors thapsigargin (Tg), cyclopiazonic acid, and 2,5-di-tert-butylhydroquinone. Because tissue-specific targeting of SERCA2b by Tg analogues is considered for prostate cancer therapy, the inhibition of SPCA1a by Tg might represent an off-target risk. We assessed the structure-activity relationship (SAR) of Tg for SPCA1a by in silico modeling, site-directed mutagenesis, and measuring the potency of a series of Tg analogues. These indicate that Tg and the analogues are bound via the Tg scaffold but with lower affinity to the same homologous cavity as on the membrane surface of SERCA1a. The lower Tg affinity may depend on a more flexible binding cavity in SPCA1a, with low contributions of the Tg O-3, O-8, and O-10 chains to the binding energy. Conversely, the protein interaction of the Tg O-2 side chain with SPCA1a appears comparable with that of SERCA1a. These differences define a SAR of Tg for SPCA1a distinct from that of SERCA1a, indicating that Tg analogues with a higher specificity for SPCA1a can probably be developed.


Assuntos
ATPases Transportadoras de Cálcio/antagonistas & inibidores , ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , Tapsigargina/química , Animais , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Cálcio/química , Colesterol/química , Desenho de Fármacos , Feminino , Humanos , Hidroquinonas/química , Indóis/química , Ácidos Linoleicos/química , Lipossomos/química , Masculino , Mutagênese Sítio-Dirigida , Ácidos Oleicos/química , Ácidos Fosfatídicos/química , Neoplasias da Próstata/tratamento farmacológico , Ligação Proteica , Conformação Proteica , Coelhos , Proteínas Recombinantes/química , Saccharomyces cerevisiae/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , Esfingomielinas/química , Relação Estrutura-Atividade
12.
Proc Natl Acad Sci U S A ; 112(29): 9040-5, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26134396

RESUMO

ATP13A2 is a lysosomal P-type transport ATPase that has been implicated in Kufor-Rakeb syndrome and Parkinson's disease (PD), providing protection against α-synuclein, Mn(2+), and Zn(2+) toxicity in various model systems. So far, the molecular function and regulation of ATP13A2 remains undetermined. Here, we demonstrate that ATP13A2 contains a unique N-terminal hydrophobic extension that lies on the cytosolic membrane surface of the lysosome, where it interacts with the lysosomal signaling lipids phosphatidic acid (PA) and phosphatidylinositol(3,5)bisphosphate [PI(3,5)P2]. We further demonstrate that ATP13A2 accumulates in an inactive autophosphorylated state and that PA and PI(3,5)P2 stimulate the autophosphorylation of ATP13A2. In a cellular model of PD, only catalytically active ATP13A2 offers cellular protection against rotenone-induced mitochondrial stress, which relies on the availability of PA and PI(3,5)P2. Thus, the N-terminal binding of PA and PI(3,5)P2 emerges as a key to unlock the activity of ATP13A2, which may offer a therapeutic strategy to activate ATP13A2 and thereby reduce α-synuclein toxicity or mitochondrial stress in PD or related disorders.


Assuntos
Lipídeos/química , Doença de Parkinson/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Citosol/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Manganês/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Ácidos Fosfatídicos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética , Homologia Estrutural de Proteína , Zinco/farmacologia
13.
Biochim Biophys Acta ; 1813(5): 1118-27, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21215281

RESUMO

The ubiquitous sarco(endo)plasmic reticulum (SR/ER) Ca(2+) ATPase (SERCA2b) and secretory-pathway Ca(2+) ATPase (SPCA1a) belong both to the P(2A)-type ATPase subgroup of Ca(2+) transporters and play a crucial role in the Ca(2+) homeostasis of respectively the ER and Golgi apparatus. They are ubiquitously expressed, but their low abundance precludes purification for crystallization. We have developed a new strategy for purification of recombinant hSERCA2b and hSPCA1a that is based on overexpression in yeast followed by a two-step affinity chromatography method biasing towards properly folded protein. In a first step, these proteins were purified with the aid of an analogue of the SERCA inhibitor thapsigargin (Tg) coupled to a matrix. Wild-type (WT) hSERCA2b bound efficiently to the gel, but its elution was hampered by the high affinity of SERCA2b for Tg. Therefore, a mutant was generated carrying minor modifications in the Tg-binding site showing a lower affinity for Tg. In a second step, reactive dye chromatography was performed to further purify and concentrate the properly folded pumps and to exchange the detergent to one more suitable for crystallization. A similar strategy was successfully applied to purify WT SPCA1a. This study shows that it is possible to purify functionally active intracellular Ca(2+) ATPases using successive thapsigargin and reactive dye affinity chromatography for future structural studies. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.


Assuntos
ATPases Transportadoras de Cálcio/isolamento & purificação , Cromatografia de Afinidade/métodos , Espaço Intracelular/enzimologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/isolamento & purificação , Tapsigargina/metabolismo , Sítios de Ligação , ATPases Transportadoras de Cálcio/química , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/isolamento & purificação , Estrutura Secundária de Proteína , Proteínas Recombinantes/isolamento & purificação , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , Tapsigargina/química
14.
PLoS One ; 2(5): e474, 2007 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-17534424

RESUMO

BACKGROUND: The mammalian CLC protein family comprises nine members (ClC-1 to -7 and ClC-Ka, -Kb) that function either as plasma membrane chloride channels or as intracellular chloride/proton antiporters, and that sustain a broad spectrum of cellular processes, such as membrane excitability, transepithelial transport, endocytosis and lysosomal degradation. In this study we focus on human ClC-6, which is structurally most related to the late endosomal/lysomal ClC-7. PRINCIPAL FINDINGS: Using a polyclonal affinity-purified antibody directed against a unique epitope in the ClC-6 COOH-terminal tail, we show that human ClC-6, when transfected in COS-1 cells, is N-glycosylated in a region that is evolutionary poorly conserved between mammalian CLC proteins and that is located between the predicted helices K and M. Three asparagine residues (N410, N422 and N432) have been defined by mutagenesis as acceptor sites for N-glycosylation, but only two of the three sites seem to be simultaneously N-glycosylated. In a differentiated human neuroblastoma cell line (SH-SY5Y), endogenous ClC-6 colocalizes with LAMP-1, a late endosomal/lysosomal marker, but not with early/recycling endosomal markers such as EEA-1 and transferrin receptor. In contrast, when transiently expressed in COS-1 or HeLa cells, human ClC-6 mainly overlaps with markers for early/recycling endosomes (transferrin receptor, EEA-1, Rab5, Rab4) and not with late endosomal/lysosomal markers (LAMP-1, Rab7). Analogously, overexpression of human ClC-6 in SH-SY5Y cells also leads to an early/recycling endosomal localization of the exogenously expressed ClC-6 protein. Finally, in transiently transfected COS-1 cells, ClC-6 copurifies with detergent-resistant membrane fractions, suggesting its partitioning in lipid rafts. Mutating a juxtamembrane string of basic amino acids (amino acids 71-75: KKGRR) disturbs the association with detergent-resistant membrane fractions and also affects the segregation of ClC-6 and ClC-7 when cotransfected in COS-1 cells. CONCLUSIONS: We conclude that human ClC-6 is an endosomal glycoprotein that partitions in detergent resistant lipid domains. The differential sorting of endogenous (late endosomal) versus overexpressed (early and recycling endosomal) ClC-6 is reminiscent of that of other late endosomal/lysosomal membrane proteins (e.g. LIMP II), and is consistent with a rate-limiting sorting step for ClC-6 between early endosomes and its final destination in late endosomes.


Assuntos
Canais de Cloreto/metabolismo , Metabolismo dos Lipídeos , Sequência de Aminoácidos , Animais , Anticorpos/química , Anticorpos/imunologia , Western Blotting , Células COS , Linhagem Celular Tumoral , Canais de Cloreto/imunologia , Chlorocebus aethiops , Eletroforese em Gel de Poliacrilamida , Glicosilação , Humanos , Imuno-Histoquímica , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
15.
Am J Physiol Cell Physiol ; 290(5): C1287-96, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16338968

RESUMO

Regulatory volume decrease (RVD) is a protective mechanism that allows mammalian cells to restore their volume when exposed to a hypotonic environment. A key component of RVD is the release of K(+), Cl(-), and organic osmolytes, such as taurine, which then drives osmotic water efflux. Previous experiments have indicated that caveolin-1, a coat protein of caveolae microdomains in the plasma membrane, promotes the swelling-induced Cl(-) current (I(Cl,swell)) through volume-regulated anion channels. However, it is not known whether the stimulation by caveolin-1 is restricted to the release of Cl(-) or whether it also affects the swelling-induced release of other components, such as organic osmolytes. To address this problem, we have studied I(Cl,swell) and the hypotonicity-induced release of taurine and ATP in wild-type Caco-2 cells that are caveolin-1 deficient and in stably transfected Caco-2 cells that express caveolin-1. Electrophysiological characterization of wild-type and stably transfected Caco-2 showed that caveolin-1 promoted I(Cl,swell), but not cystic fibrosis transmembrane conductance regulator currents. Furthermore, caveolin-1 expression stimulated the hypotonicity-induced release of taurine and ATP in stably transfected Caco-2 cells grown as a monolayer. Interestingly, the effect of caveolin-1 was polarized because only the release at the basolateral membrane, but not at the apical membrane, was increased. It is therefore concluded that caveolin-1 facilitates the hypotonicity-induced release of Cl(-), taurine, and ATP, and that in polarized epithelial cells, the effect of caveolin-1 is compartmentalized to the basolateral membrane.


Assuntos
Trifosfato de Adenosina/metabolismo , Caveolina 1/fisiologia , Membrana Celular/fisiologia , Canais Iônicos/fisiologia , Potenciais da Membrana/fisiologia , Taurina/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia , Células CACO-2 , Tamanho Celular , Humanos , Soluções Hipotônicas , Proteínas dos Microfilamentos , Pressão Osmótica
16.
Am J Physiol Cell Physiol ; 289(6): C1369-78, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16275737

RESUMO

The cystathionine-beta-synthase (CBS) domain is an evolutionarily conserved protein domain that is present in the proteome of archaebacteria, prokaryotes, and eukaryotes. CBS domains usually come in tandem repeats and are found in cytosolic and membrane proteins performing different functions (metabolic enzymes, kinases, and channels). Crystallographic studies of bacterial CBS domains have shown that two CBS domains form an intramolecular dimeric structure (CBS pair). Several human hereditary diseases (homocystinuria, retinitis pigmentosa, hypertrophic cardiomyopathy, myotonia congenital, etc.) can be caused by mutations in CBS domains of, respectively, cystathionine-beta-synthase, inosine 5'-monophosphate dehydrogenase, AMP kinase, and chloride channels. Despite their clinical relevance, it remains to be established what the precise function of CBS domains is and how they affect the structural and/or functional properties of an enzyme, kinase, or channel. Depending on the protein in which they occur, CBS domains have been proposed to affect multimerization and sorting of proteins, channel gating, and ligand binding. However, recent experiments revealing that CBS domains can bind adenosine-containing ligands such ATP, AMP, or S-adenosylmethionine have led to the hypothesis that CBS domains function as sensors of intracellular metabolites.


Assuntos
Cistationina beta-Sintase/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Cistationina beta-Sintase/química , Cistationina beta-Sintase/genética , Dimerização , Doenças Genéticas Inatas/genética , Humanos , IMP Desidrogenase/genética , IMP Desidrogenase/metabolismo , Modelos Moleculares , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína
17.
Am J Physiol Cell Physiol ; 288(1): C20-9, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15591244

RESUMO

The plasma membrane of epithelial cells is subdivided into two physically separated compartments known as the apical and basolateral membranes. To obtain directional transepithelial solute transport, membrane transporters (i.e., ion channels, cotransporters, exchangers, and ion pumps) need to be targeted selectively to either of these membrane domains. In addition, the transport properties of an epithelial cell will be maintained only if these membrane transporters are retained and properly regulated in their specific membrane compartments. Recent reports have indicated that PDZ domain-containing proteins play a dual role in these processes and, in addition, that different apical and basolateral PDZ proteins perform similar tasks in their respective membrane domains. First, although PDZ-based interactions are dispensable for the biosynthetic targeting to the proper membrane domain, the PDZ network ensures that the membrane proteins are efficiently retained at the cell surface. Second, the close spatial positioning of functionally related proteins (e.g., receptors, kinases, channels) into a signal transduction complex (transducisome) allows fast and efficient control of membrane transport processes.


Assuntos
Proteínas de Transporte/metabolismo , Polaridade Celular/fisiologia , Células Epiteliais/metabolismo , Proteínas de Membrana/metabolismo , Animais , Proteínas de Transporte/química , Células Epiteliais/citologia , Humanos , Proteínas de Membrana/química , Estrutura Terciária de Proteína
18.
Proc Am Thorac Soc ; 1(1): 22-7, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-16113407

RESUMO

Calcium-activated chloride channels (CaCCs) participate in many different physiologic processes such as transepithelial transport, excitability of neurons and muscle cells, and oocyte fertilization. Within the airways, they contribute to epithelial fluid secretion. This review focuses on three outstanding questions about CaCCs. First, although their biophysical fingerprint (anion selectivity, Ca2+ and voltage dependence, kinetics) is fairly well established, the molecular identity of CaCCs is still unresolved. CLCA, a family of proteins of which four members have so far been identified in humans, has been proposed to mediate calcium-activated chloride currents. However, the biophysical profile and expression pattern of endogenous CaCCs differ from those of the CLCA proteins. Another family of membrane proteins, the bestrophins, has recently been shown in transfected HEK293 cells to confer anion-selective currents that are activated by submicromolar Ca2+ concentrations. Second, pharmacologic tools to manipulate CaCCs are poorly selective. This lack of specificity not only hampers the structural and functional characterization of these channels but also restricts therapeutic options for altering CaCC function. Finally, potential pitfalls with respect to CaCCs as molecular targets for cystic fibrosis therapy are discussed.


Assuntos
Cálcio/metabolismo , Canais de Cloreto/fisiologia , Fibrose Cística/metabolismo , Animais , Fibrose Cística/patologia , Líquido Extracelular/metabolismo , Humanos , Potenciais da Membrana/fisiologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA