RESUMO
Intrauterine infection/inflammation (IUI) is a frequent complication of pregnancy leading to preterm labor and fetal inflammation. How inflammation is modulated at the maternal-fetal interface is unresolved. We compared transcriptomics of amnion (a fetal tissue in contact with amniotic fluid) in a preterm Rhesus macaque model of IUI induced by lipopolysaccharide with human cohorts of chorioamnionitis. Bulk RNA sequencing (RNA-seq) amnion transcriptomic profiles were remarkably similar in both Rhesus and human subjects and revealed that induction of key labor-mediating genes such as IL1 and IL6 was dependent on nuclear factor κB (NF-κB) signaling and reversed by the anti-tumor necrosis factor (TNF) antibody Adalimumab. Inhibition of collagen biosynthesis by IUI was partially restored by Adalimumab. Interestingly, single-cell transcriptomics, flow cytometry, and immunohistology demonstrated that a subset of amnion mesenchymal cells (AMCs) increase CD14 and other myeloid cell markers during IUI both in the human and Rhesus macaque. Our data suggest that CD14+ AMCs represent activated AMCs at the maternal-fetal interface.
RESUMO
Marfan syndrome causes a hereditary form of thoracic aortic aneurysms with worse outcomes in male compared to female patients. In this study, we examine the effects of 17 ß-estradiol on aortic dilation and rupture in a Marfan mouse model. Marfan male mice were administered 17 ß-estradiol, and the growth in the aortic root, along with the risk of aortic rupture, was measured. Transcriptomic profiling was used to identify enriched pathways from 17 ß-estradiol treatments. Aortic smooth muscle cells were then treated with cytokines to validate functional mechanisms. We show that 17 ß-estradiol decreased the size and rate of aortic root dilation and improved survival from rupture. The Marfan transcriptome was enriched in inflammatory genes, and the addition of 17 ß-estradiol modulated a set of genes that function through TNFα mediated NF-κB signaling. In addition, 17 ß-estradiol suppressed the induction of these TNFα induced genes in aortic smooth muscle cells in vitro in an NF-κB dependent manner, and 17 ß-estradiol decreased the formation of adventitial inflammatory foci in aortic roots in vivo. In conclusion, 17 ß-estradiol protects against the dilation and rupture of aortic roots in Marfan male mice through the inhibition of TNFα-NF-κB signaling.
Assuntos
Estradiol , Síndrome de Marfan , Feminino , Masculino , Animais , Camundongos , Estradiol/farmacologia , Fator de Necrose Tumoral alfa/genética , Aorta Torácica , NF-kappa B , Dilatação , Síndrome de Marfan/tratamento farmacológico , Síndrome de Marfan/genéticaRESUMO
The identification and role of endothelial progenitor cells in pulmonary arterial hypertension (PAH) remain controversial. Single-cell omics analysis can shed light on endothelial progenitor cells and their potential contribution to PAH pathobiology. We aim to identify endothelial cells that may have stem/progenitor potential in rat lungs and assess their relevance to PAH. Differential expression, gene set enrichment, cell-cell communication, and trajectory reconstruction analyses were performed on lung endothelial cells from single-cell RNA sequencing of Sugen-hypoxia, monocrotaline, and control rats. Relevance to human PAH was assessed in multiple independent blood and lung transcriptomic data sets. Rat lung endothelial cells were visualized by immunofluorescence in situ, analyzed by flow cytometry, and assessed for tubulogenesis in vitro. A subpopulation of endothelial cells (endothelial arterial type 2 [EA2]) marked by Tm4sf1 (transmembrane 4 L six family member 1), a gene strongly implicated in cancer, harbored a distinct transcriptomic signature enriched for angiogenesis and CXCL12 signaling. Trajectory analysis predicted that EA2 has a less differentiated state compared with other endothelial subpopulations. Analysis of independent data sets revealed that TM4SF1 is downregulated in lungs and endothelial cells from patients and PAH models, is a marker for hematopoietic stem cells, and is upregulated in PAH circulation. TM4SF1+CD31+ rat lung endothelial cells were visualized in distal pulmonary arteries, expressed hematopoietic marker CD45, and formed tubules in coculture with lung fibroblasts. Our study uncovered a novel Tm4sf1-marked subpopulation of rat lung endothelial cells that may have stem/progenitor potential and demonstrated its relevance to PAH. Future studies are warranted to further elucidate the role of EA2 and Tm4sf1 in PAH.
Assuntos
Células Progenitoras Endoteliais , Hipertensão Arterial Pulmonar , Animais , Humanos , Ratos , Antígenos de Superfície/metabolismo , Modelos Animais de Doenças , Endotélio , Hipertensão Pulmonar Primária Familiar/metabolismo , Monocrotalina , Proteínas de Neoplasias/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/metabolismoRESUMO
BACKGROUND: RNA-binding proteins are master orchestrators of gene expression regulation. They regulate hundreds of transcripts at once by recognizing specific motifs. Thus, characterizing RNA-binding proteins targets is critical to harvest their full therapeutic potential. However, such investigation has often been restricted to a few RNA-binding protein targets, limiting our understanding of their function. In cancer, the RNA-binding protein HNRNPA2B1 (heterogeneous nuclear ribonucleoprotein A2B1; A2B1) promotes the pro-proliferative/anti-apoptotic phenotype. The same phenotype in pulmonary arterial smooth muscle cells (PASMCs) is responsible for the development of pulmonary arterial hypertension (PAH). However, A2B1 function has never been investigated in PAH. METHOD: Through the integration of computational and experimental biology, the authors investigated the role of A2B1 in human PAH-PASMC. Bioinformatics and RNA sequencing allowed them to investigate the transcriptome-wide function of A2B1, and RNA immunoprecipitation and A2B1 silencing experiments allowed them to decipher the intricate molecular mechanism at play. In addition, they performed a preclinical trial in the monocrotaline-induced pulmonary hypertension rat model to investigate the relevance of A2B1 inhibition in mitigating pulmonary hypertension severity. RESULTS: They found that A2B1 expression and its nuclear localization are increased in human PAH-PASMC. Using bioinformatics, they identified 3 known motifs of A2B1 and all mRNAs carrying them. In PAH-PASMC, they demonstrated the complementary nonredundant function of A2B1 motifs because all motifs are implicated in different aspects of the cell cycle. In addition, they showed that in PAH-PASMC, A2B1 promotes the expression of its targets. A2B1 silencing in PAH-PASMC led to a decrease of all tested mRNAs carrying an A2B1 motif and a concomitant decrease in proliferation and resistance to apoptosis. Last, in vivo A2B1 inhibition in the lungs rescued pulmonary hypertension in rats. CONCLUSIONS: Through the integration of computational and experimental biology, the study revealed the role of A2B1 as a master orchestrator of the PAH-PASMC phenotype and its relevance as a therapeutic target in PAH.
Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Humanos , Ratos , Proliferação de Células , Hipertensão Pulmonar Primária Familiar/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Hipertensão Pulmonar/metabolismo , Monocrotalina/metabolismo , Monocrotalina/toxicidade , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo , Artéria Pulmonar , RNA/metabolismo , Proteínas de Ligação a RNA/genéticaRESUMO
Despite aggressive treatments, pancreatic ductal adenocarcinoma (PDAC) remains an intractable disease, largely because it is refractory to therapeutic interventions. To overcome its nutrient-poor microenvironment, PDAC heavily relies on autophagy for metabolic needs to promote tumor growth and survival. Here, we explore autophagy inhibition as a method to enhance the effects of radiotherapy on PDAC tumors. Hydroxychloroquine is an autophagy inhibitor at the focus of many PDAC clinical trials, including in combination with radiotherapy. However, its acid-labile properties likely reduce its intratumoral efficacy. Here, we demonstrate that EAD1, a synthesized analogue of HCQ, is a more effective therapeutic for sensitizing PDAC tumors of various KRAS mutations to radiotherapy. Specifically, in vitro models show that EAD1 is an effective inhibitor of autophagic flux in PDAC cells, accompanied by a potent inhibition of proliferation. When combined with radiotherapy, EAD1 is consistently superior to HCQ not only as a single agent, but also in radiosensitizing PDAC cells, and perhaps most importantly, in decreasing the self-renewal capacity of PDAC cancer stem cells (PCSC). The more pronounced sensitizing effects of autophagy inhibitors on pancreatic stem over differentiated cells points to a new understanding that PCSCs may be more dependent on autophagy to counter the effects of radiation toxicity, a potential mechanism explaining the resistance of PCSCs to radiotherapy. Finally, in vivo subcutaneous tumor models demonstrate that combination of radiotherapy and EAD1 is the most successful at controlling tumor growth. The models also confirmed a similar toxicity profile between EAD1 and Hydroxychloroquine.
Assuntos
Autofagia/genética , Autofagia/efeitos da radiação , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/radioterapia , Radiossensibilizantes/uso terapêutico , Animais , Humanos , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Radiossensibilizantes/farmacologia , Análise de Sobrevida , Neoplasias PancreáticasRESUMO
The novel 2019 coronavirus disease (COVID-19), resulting from severe acute respiratory syndrome coronarvirus-2 (SARS-CoV-2) infection, typically leads to respiratory failure in severe cases; however, cardiovascular injury is reported to contribute to a substantial proportion of COVID-19 deaths. Preexisting cardiovascular disease (CVD) is among the most common risk factors for hospitalization and death in COVID-19 patients, and the pathogenic mechanisms of COVID-19 disease progression itself may promote the development of cardiovascular injury, increasing risk of in-hospital death. Sex differences in COVID-19 are becoming more apparent as mounting data indicate that males seem to be disproportionately at risk of severe COVID-19 outcome due to preexisting CVD and COVID-19-related cardiovascular injury. In this review, we will provide a basic science perspective on current clinical observations in this rapidly evolving field and discuss the interplay sex differences, preexisting CVD and COVID-19-related cardiac injury.
Assuntos
COVID-19/epidemiologia , Doenças Cardiovasculares/epidemiologia , Fatores Sexuais , Enzima de Conversão de Angiotensina 2/genética , Arritmias Cardíacas/complicações , Arritmias Cardíacas/epidemiologia , COVID-19/complicações , COVID-19/genética , Doenças Cardiovasculares/complicações , Progressão da Doença , Suscetibilidade a Doenças , Endotélio Vascular/patologia , Feminino , Humanos , Inflamação , Masculino , Microcirculação , Obesidade/complicações , Fatores de Risco , Fumar , Trombose/complicações , Trombose/epidemiologiaRESUMO
Pulmonary arterial hypertension (PAH) is a fatal disease characterized by increased mean pulmonary arterial pressure. Elevated plasma and lung concentrations of oxidized lipids, including 15-hydroxyeicosatetraenoic acid (15-HETE), have been demonstrated in patients with PAH and animal models. We previously demonstrated that feeding mice with 15-HETE is sufficient to induce pulmonary hypertension, but the mechanisms remain unknown. RNA sequencing data from the mouse lungs on 15-HETE diet revealed significant activation of pathways involved in both antigen processing and presentation and T cell-mediated cytotoxicity. Analysis of human microarray from patients with PAH also identified activation of identical pathways compared with controls. We show that in both 15-HETE-fed mice and patients with PAH, expression of the immunoproteasome subunit 5 is significantly increased, which was concomitant with an increase in the number of CD8/CD69 (cluster of differentiation 8 / cluster of differentiation 69) double-positive cells, as well as pulmonary arterial endothelial cell apoptosis in mice. Human pulmonary arterial endothelial cells cultured with 15-HETE were more prone to apoptosis when exposed to CD8 cells. Cultured intestinal epithelial cells secreted more oxidized lipids in response to 15-HETE, which is consistent with accumulation of circulating oxidized lipids in 15-HETE-fed mice. Administration of an apoA-I (apolipoprotein A-I) mimetic peptide, Tg6F (transgenic 6F), which is known to prevent accumulation of circulating oxidized lipids, not only inhibited pulmonary arterial endothelial cell apoptosis but also prevented and rescued 15-HETE-induced pulmonary hypertension in mice. In conclusion, our results suggest that (1) 15-HETE diet induces pulmonary hypertension by a mechanism that involves oxidized lipid-mediated T cell-dependent pulmonary arterial endothelial cell apoptosis and (2) Tg6F administration may be a novel therapy for treating PAH.
Assuntos
Apoptose , Células Endoteliais , Ácidos Hidroxieicosatetraenoicos/metabolismo , Hipertensão Pulmonar/metabolismo , Peptídeos/farmacologia , Artéria Pulmonar , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Diferenciação Celular , Proliferação de Células , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Hipertensão Pulmonar/prevenção & controle , Fatores Imunológicos/farmacologia , Imunoproteínas , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Complexo de Endopeptidases do Proteassoma , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Linfócitos TRESUMO
Cardiovascular Diseases (CVDs) are the leading cause of death globally. More than 17 million people die worldwide from CVD per year. There is considerable evidence suggesting that estrogen modulates cardiovascular physiology and function in both health and disease, and that it could potentially serve as a cardioprotective agent. The effects of estrogen on cardiovascular function are mediated by nuclear and membrane estrogen receptors (ERs), including estrogen receptor alpha (ERα), estrogen receptor beta (ERß), and G-protein-coupled ER (GPR30 or GPER). Receptor binding in turn confers pleiotropic effects through both genomic and non-genomic signaling to maintain cardiovascular homeostasis. Each ER has been implicated in multiple pre-clinical cardiovascular disease models. This review will discuss current reports on the underlying molecular mechanisms of the ERs in regulating vascular pathology, with a special emphasis on hypertension, pulmonary hypertension, and atherosclerosis, as well as in regulating cardiac pathology, with a particular emphasis on ischemia/reperfusion injury, heart failure with reduced ejection fraction, and heart failure with preserved ejection fraction.
Assuntos
Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Suscetibilidade a Doenças , Receptores de Estrogênio/metabolismo , Animais , Doenças Cardiovasculares/diagnóstico , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patologia , Sistema Cardiovascular/fisiopatologia , Regulação da Expressão Gênica , Humanos , Receptores de Estrogênio/genética , Transdução de SinaisRESUMO
The objective of the study was to identify the mechanism of action for a radiation mitigator of the gastrointestinal (GI) acute radiation syndrome (ARS), identified in an unbiased high-throughput screen. We used mice irradiated with a lethal dose of radiation and treated with daily injections of the radiation mitigator 1-[(4-nitrophenyl)sulfonyl]-4-phenylpiperazine to study its effects on key pathways involved in intestinal stem cell (ISC) maintenance. RNASeq, quantitative reverse transcriptase-polymerase chain reaction, and immunohistochemistry were performed to identify pathways engaged after drug treatment. Target validation was performed with competition assays, reporter cells, and in silico docking. 1-[(4-Nitrophenyl)sulfonyl]-4-phenylpiperazine activates Hedgehog signaling by binding to the transmembrane domain of Smoothened, thereby expanding the ISC pool, increasing the number of regenerating crypts and preventing the GI-ARS. We conclude that Smoothened is a target for radiation mitigation in the small intestine that could be explored for use in radiation accidents as well as to mitigate normal tissue toxicity during and after radiotherapy of the abdomen.
Assuntos
Síndrome Aguda da Radiação/radioterapia , Nitrofenóis/química , Piperazinas/química , Animais , CamundongosRESUMO
Sex differences are evident in the pathophysiology of heart failure (HF). Progression of HF is promoted by cardiac fibrosis and no fibrosis-specific therapies are currently available. The fibrotic response is mediated by cardiac fibroblasts (CFs), and a central event is their phenotypic transition to pro-fibrotic myofibroblasts. These myofibroblasts may arise from various cellular origins including resident CFs and epicardial and endothelial cells. Both female subjects in clinical studies and female animals in experimental studies generally present less cardiac fibrosis compared with males. This difference is at least partially considered attributable to the ovarian hormone 17ß-estradiol (E2). E2 signals via estrogen receptors to regulate genes are involved in the fibrotic response and myofibroblast transition. Besides protein-coding genes, E2 also regulates transcription of microRNA that modulate cardiac fibrosis. Sex dimorphism, E2, and miRNAs form multi-level regulatory networks in the pathophysiology of cardiac fibrosis, and the mechanism of these networks is not yet fully deciphered. Therefore, this review is aimed at summarizing current knowledge on sex differences, E2, and estrogen receptors in cardiac fibrosis, emphasizing on microRNAs and myofibroblast origins. KEY MESSAGES: ⢠E2 and ERs regulate cardiac fibroblast function. ⢠E2 and ERs may distinctly affect male and female cardiac fibrosis pathophysiology. ⢠Sex, E2, and miRNAs form multi-level regulatory networks in cardiac fibrosis. ⢠Sex-dimorphic and E2-regulated miRNAs affect mesenchymal transition.
Assuntos
Estrogênios/metabolismo , MicroRNAs/genética , Miocárdio/metabolismo , Transdução de Sinais , Animais , Feminino , Fibrose , Regulação da Expressão Gênica , Humanos , Masculino , Miocárdio/patologia , Fatores SexuaisRESUMO
Pulmonary hypertension secondary to pulmonary fibrosis (PF-PH) is one of the most common causes of PH, and there is no approved therapy. The molecular signature of PF-PH and underlying mechanism of why pulmonary hypertension (PH) develops in PF patients remains understudied and poorly understood. We observed significantly increased vascular wall thickness in both fibrotic and non-fibrotic areas of PF-PH patient lungs compared to PF patients. The increased vascular wall thickness in PF-PH patients is concomitant with a significantly increased expression of the transcription factor Slug within the macrophages and its target prolactin-induced protein (PIP), an extracellular matrix protein that induces pulmonary arterial smooth muscle cell proliferation. We developed a novel translational rat model of combined PF-PH that is reproducible and shares similar histological features (fibrosis, pulmonary vascular remodeling) and molecular features (Slug and PIP upregulation) with human PF-PH. We found Slug inhibition decreases PH severity in our animal model of PF-PH. Our study highlights the role of Slug/PIP axis in PF-PH.
Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Fibrose Pulmonar/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Adulto , Idoso , Animais , Feminino , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/metabolismo , Masculino , Proteínas de Membrana Transportadoras/genética , Pessoa de Meia-Idade , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Ratos Wistar , Fatores de Transcrição da Família Snail/genética , Adulto JovemRESUMO
OBJECTIVE: To investigate the novel role of Paraoxonase 2 (PON2) in modulating acute myocardial ischemia-reperfusion injury (IRI). APPROACH: IRI was induced both in vivo and ex vivo in male, C57BL6/J (WT) and PON2-deficient (PON-def) mice. In addition, in vitro hypoxia-reoxygenation injury (HRI) was induced in H9c2 cells expressing empty vector (H9c2-EV) or human PON2 (H9c2-hPON2)⯱â¯LY294002 (a potent PI3K inhibitor). Infarct size, PON2 gene expression, mitochondrial calcium retention capacity (CRC), reactive oxygen species (ROS) generation, mitochondrial membrane potential, CHOP and pGSK-3ß protein levels, and cell apoptosis were evaluated. RESULTS: PON2 gene expression is upregulated in WT mice following in vivo IRI. PON2-def mice exhibit a 2-fold larger infarct, increased CHOP levels, and reduced pGSK-3ß levels compared to WT controls. Global cardiac mitochondria isolated from PON2-def mice exhibit reduced CRC and increased ROS production. Cardiomyocytes isolated from PON2-def mice subjected to ex vivo IRI have mitochondria with reduced CRC (also seen under non-IRI conditions), and increased ROS generation and apoptosis compared to WT controls. PON2 knockdown in H9c2 cells subjected to HRI leads to an increase in mitochondrial membrane depolarization. H9c2-hPON2 cells exhibit i) improvement in mitochondrial membrane potential, pGSK-3ß levels and mitochondrial CRC, and ii) decrease in CHOP levels, mitochondrial ROS generation and cell apoptosis, when compared to H9c2-EV controls. Treatment with LY294002 resulted in a decrease of mitochondrial CRC and increase in mitochondrial ROS production and cell apoptosis in the H9c2-hPON2 group versus H9c2-EV controls. CONCLUSION: PON2 protects against acute myocardial IRI by reducing mitochondrial dysfunction and oxidative stress in cardiomyocytes via activation of the PI3K/Akt/GSK-3ß RISK pathway.
Assuntos
Arildialquilfosfatase/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Mitocôndrias Cardíacas/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doença Aguda , Animais , Apoptose , Arildialquilfosfatase/deficiência , Cardiotônicos/metabolismo , Linhagem Celular , Humanos , Masculino , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosforilação , RatosRESUMO
BACKGROUND: Recently, we showed that exogenous treatment with estrogen (E2) rescues pre-existing advanced heart failure (HF) in mice. Since most of the biological actions of E2 are mediated through the classical estrogen receptors alpha (ERα) and/or beta (ERß), and both these receptors are present in the heart, we examined the role of ERα and ERß in the rescue action of E2 against HF. METHODS: Severe HF was induced in male mice by transverse aortic constriction-induced pressure overload. Once the ejection fraction (EF) reached ~ 35%, mice were treated with selective agonists for ERα (PPT, 850 µg/kg/day), ERß (DPN, 850 µg/kg/day), or E2 (30 µg/kg/day) together with an ERß-antagonist (PHTPP, 850 µg/kg/day) for 10 days. RESULTS: EF of HF mice was significantly improved to 45.3 ± 2.1% with diarylpropionitrile (DPN) treatment, but not with PPT (31.1 ± 2.3%). E2 failed to rescue HF in the presence of PHTPP, as there was no significant improvement in the EF at the end of the 10-day treatment (32.5 ± 5.2%). The improvement of heart function in HF mice treated with ERß agonist DPN was also associated with reduced cardiac fibrosis and increased cardiac angiogenesis, while the ERα agonist PPT had no significant effect on either cardiac fibrosis or angiogenesis. Furthermore, DPN improved hemodynamic parameters in HF mice, whereas PPT had no significant effect. CONCLUSIONS: E2 treatment rescues pre-existing severe HF mainly through ERß. Rescue of HF by ERß activation is also associated with stimulation of cardiac angiogenesis, suppression of fibrosis, and restoration of hemodynamic parameters.
Assuntos
Estradiol/uso terapêutico , Receptor beta de Estrogênio/fisiologia , Estrogênios/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Animais , Células Cultivadas , Técnicas de Cocultura , Estradiol/farmacologia , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/fisiologia , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/antagonistas & inibidores , Estrogênios/farmacologia , Coração/efeitos dos fármacos , Coração/fisiologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Camundongos , RatosRESUMO
The pathological consequences of ischemic heart disease involve signaling through the autonomic nervous system. Although early activation may serve to maintain hemodynamic stability, persistent aberrant sympathoexcitation contributes to the development of lethal arrhythmias and heart failure. We hypothesized that as the myocardium reacts and remodels to ischemic injury over time, there is an analogous sequence of gene expression changes in the thoracic spinal cord dorsal horn, the processing center for incoming afferent fibers from the heart to the central nervous system. Acute and chronic myocardial ischemia (MI) was induced in a large animal model of Yorkshire pigs, and the thoracic dorsal horn of treated pigs, along with control nonischemic pigs, was harvested for transcriptome analysis. We identified 32 differentially expressed genes between healthy and acute ischemia cohorts and 46 differentially expressed genes between healthy and chronic ischemia cohorts. The canonical immediate-early gene c-fos was upregulated after acute MI, along with fosB, dual specificity phosphatase 1 and 2 ( dusp1 and dusp2), and early growth response 2 (egr2). After chronic MI, there was a persistent yet unique activation of immediate-early genes, including fosB, nuclear receptor subfamily 4 group A members 1-3 ( nr4a1, nr4a2, and nr4a3), egr3, and TNF-α-induced protein 3 ( tnfaip3). In addition, differentially expressed genes from the chronic MI signature were enriched in pathways linked to apoptosis, immune regulation, and the stress response. These findings support a dynamic progression of gene expression changes in the dorsal horn with maturation of myocardial injury, and they may explain how early adaptive autonomic nervous system responses can maintain hemodynamic stability, whereas prolonged maladaptive signals can predispose patients to arrhythmias and heart failure. NEW & NOTEWORTHY Activation of the autonomic nervous system after myocardial injury can provide early cardiovascular support or prolonged aberrant sympathoexcitation. The later response can lead to lethal arrhythmias and heart failure. This study provides evidence of ongoing changes in the gene expression signature of the spinal cord dorsal horn as myocardial injury progresses over time. These changes could help explain how an adaptive nervous system response can become maladaptive over time.
Assuntos
Genes Precoces , Traumatismo por Reperfusão Miocárdica/genética , Corno Dorsal da Medula Espinal/metabolismo , Animais , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Proteína 3 de Resposta de Crescimento Precoce/genética , Proteína 3 de Resposta de Crescimento Precoce/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , Suínos , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Regulação para CimaRESUMO
Epidemiologic studies have previously suggested that premenopausal females have reduced incidence of cardiovascular disease (CVD) when compared to age-matched males, and the incidence and severity of CVD increases postmenopause. The lower incidence of cardiovascular disease in women during reproductive age is attributed at least in part to estrogen (E2). E2 binds to the traditional E2 receptors (ERs), estrogen receptor alpha (ERα), and estrogen receptor beta (ERß), as well as the more recently identified G-protein-coupled ER (GPR30), and can exert both genomic and non-genomic actions. This review summarizes the protective role of E2 and its receptors in the cardiovascular system and discusses its underlying mechanisms with an emphasis on oxidative stress, fibrosis, angiogenesis, and vascular function. This review also presents the sexual dimorphic role of ERs in modulating E2 action in cardiovascular disease. The controversies surrounding the clinical use of exogenous E2 as a therapeutic agent for cardiovascular disease in women due to the possible risks of thrombotic events, cancers, and arrhythmia are also discussed. Endogenous local E2 biosynthesis from the conversion of testosterone to E2 via aromatase enzyme offers a novel therapeutic paradigm. Targeting specific ERs in the cardiovascular system may result in novel and possibly safer therapeutic options for cardiovascular protection.
Assuntos
Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Estrogênios/metabolismo , Estrogênios/uso terapêutico , Receptores de Estrogênio/metabolismo , Animais , HumanosRESUMO
INTRODUCTION: Current therapeutic approaches for pulmonary arterial hypertension (PAH) commonly include use of prostacyclins, endothelin pathway antagonists or NO (nitric oxide) pathway modulators. These agents are non-specific and suffer from several important shortcomings including short half-lives, invasive routes of administration, higher dose and frequency requirements, and several dose-related systemic side effects. Hence, discovery of novel agents with improved therapeutic efficacy with respect to survival benefits and the development of non-invasive routes of administration are in critical need. Current research aimed at developing more selective therapies for PAH are focused both on agents acting on novel molecular targets, as well as, novel compounds acting on conventional pathways with improved characteristics. Area covered: The present review covers recently filed (issued/application) patents (2010-2016) describing novel agents acting on investigational targets as well as novel compounds with improved characteristics acting on established targets. Patents describing combinations of conventional and investigational compounds are also discussed. Expert opinion: PAH has recently been considered as cancer-like disease with over-proliferation of pulmonary arterial smooth muscle cells and endothelial cells. New cellular and molecular biological advances have revealed novel target/pathways involved in the pathogenesis and progression of PAH. Thus, discovery of agents that act on these novel pathways provides a promising avenue of research for improving therapeutic approaches for PAH.
Assuntos
Anti-Hipertensivos/administração & dosagem , Desenho de Fármacos , Hipertensão Pulmonar/tratamento farmacológico , Animais , Anti-Hipertensivos/efeitos adversos , Anti-Hipertensivos/farmacologia , Progressão da Doença , Relação Dose-Resposta a Droga , Drogas em Investigação/administração & dosagem , Drogas em Investigação/efeitos adversos , Drogas em Investigação/farmacologia , Humanos , Hipertensão Pulmonar/fisiopatologia , Terapia de Alvo Molecular , Óxido Nítrico/metabolismo , Patentes como AssuntoRESUMO
BACKGROUND: Apolipoprotein E (ApoE) is a multifunctional protein, and its deficiency leads to the development of atherosclerosis in mice. Patients with pulmonary hypertension (PH) have reduced expression of ApoE in lung tissue. ApoE is known to inhibit endothelial and smooth muscle cell proliferation and has anti-inflammatory and anti-platelet aggregation properties. Young ApoE-deficient mice have been shown to develop PH on high fat diet. The combined role of female sex and aging in the development of PH has not been investigated before. Here, we investigated the development of PH in young and middle-aged (MA) female ApoE-deficient mice and explored the role of exogenous estrogen (E2) replacement therapy for the aging females. METHODS: Wild type (WT) and ApoE-deficient female mice (Young and MA) were injected with a single intraperitoneal dose of monocrotaline (MCT, 60 mg/kg). Some ApoE-deficient MA female mice that received MCT were also treated with subcutaneous E2 pellets (0.03 mg/kg/day) from day 21 to 30 after MCT injection. Direct cardiac catheterization was performed terminally to record right ventricular systolic pressure (RVSP). Right ventricular (RV), left ventricular (LV), and interventricular septum (IVS) were dissected and weighed. Lung sections were examined using trichrome and immunofluorescence staining. Western blot analyses of lung and RV lysates were performed. RESULTS: In WT female mice, the severity of PH was similar between young and MA mice as RVSP was not significantly different (RVSP = 38.2 ± 1.2 in young vs. 40.5 ± 8.3 mmHg in MA, p < 0.05). In ApoE-deficient mice, MA females developed significantly severe PH (RVSP = 63 ± 10 mmHg) compared to young females (RVSP; 36 ± 3 mmHg, p < 0.05 vs. MA female). ApoE-deficient MA females also developed more severe RV hypertrophy compared to young females (RV hypertrophy index (RV/[LV + IVS]) = 0.53 ± 0.06 vs. 0.33 ± 0.01, p < 0.05). ApoE-deficient MA female mice manifested increased peripheral pulmonary artery muscularization and pulmonary fibrosis. E2 treatment of MA female ApoE-deficient mice resulted in a significant decrease in RVSP, reversal of pulmonary vascular remodeling, and RV hypertrophy. In MA female ApoE-deficient mice with PH, only the expression of ERß in the lungs, but not in RV, was significantly downregulated, and it was restored by E2 treatment. The expression of ERα was not affected in either lungs or RV by PH. GPR30 was only detected in the RV, and it was not affected by PH in MA female ApoE-deficient mice. CONCLUSIONS: Our results suggest that only aging female ApoE-deficient but not WT mice develop severe PH compared to younger females. Exogenous estrogen therapy rescued PH and RV hypertrophy in aging female ApoE-deficient mice possibly through restoration of lung ERß.
Assuntos
Apolipoproteínas E/deficiência , Terapia de Reposição de Estrogênios , Hipertensão Pulmonar/tratamento farmacológico , Animais , Apolipoproteínas E/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Feminino , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertrofia Ventricular Direita/tratamento farmacológico , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Monocrotalina , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Remodelação Vascular/efeitos dos fármacos , Função Ventricular/efeitos dos fármacosRESUMO
BACKGROUND: Estrogen pretreatment has been shown to attenuate the development of heart hypertrophy, but it is not known whether estrogen could also rescue heart failure (HF). Furthermore, the heart has all the machinery to locally biosynthesize estrogen via aromatase, but the role of local cardiac estrogen synthesis in HF has not yet been studied. Here we hypothesized that cardiac estrogen is reduced in HF and examined whether exogenous estrogen therapy can rescue HF. METHODS AND RESULTS: HF was induced by transaortic constriction in mice, and once mice reached an ejection fraction (EF) of ≈35%, they were treated with estrogen for 10 days. Cardiac structure and function, angiogenesis, and fibrosis were assessed, and estrogen was measured in plasma and in heart. Cardiac estrogen concentrations (6.18±1.12 pg/160 mg heart in HF versus 17.79±1.28 pg/mL in control) and aromatase transcripts (0.19±0.04, normalized to control, P<0.05) were significantly reduced in HF. Estrogen therapy increased cardiac estrogen 3-fold and restored aromatase transcripts. Estrogen also rescued HF by restoring ejection fraction to 53.1±1.3% (P<0.001) and improving cardiac hemodynamics both in male and female mice. Estrogen therapy stimulated angiogenesis as capillary density increased from 0.66±0.07 in HF to 2.83±0.14 (P<0.001, normalized to control) and reversed the fibrotic scarring observed in HF (45.5±2.8% in HF versus 5.3±1.0%, P<0.001). Stimulation of angiogenesis by estrogen seems to be one of the key mechanisms, since in the presence of an angiogenesis inhibitor estrogen failed to rescue HF (ejection fraction=29.3±2.1%, P<0.001 versus E2). CONCLUSIONS: Estrogen rescues pre-existing HF by restoring cardiac estrogen and aromatase, stimulating angiogenesis, and suppressing fibrosis.
Assuntos
Estradiol/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Disfunção Ventricular Esquerda/tratamento farmacológico , Animais , Aromatase/genética , Aromatase/metabolismo , Modelos Animais de Doenças , Estradiol/sangue , Receptor beta de Estrogênio/efeitos dos fármacos , Receptor beta de Estrogênio/metabolismo , Feminino , Fibrose , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Recuperação de Função Fisiológica , Transdução de Sinais/efeitos dos fármacos , Volume Sistólico/efeitos dos fármacos , Fatores de Tempo , Disfunção Ventricular Esquerda/sangue , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda/efeitos dos fármacosRESUMO
Pulmonary hypertension (PH) is a progressive lung disease associated with proliferation of smooth muscle cells and constriction of lung microvasculature, leading to increased pulmonary arterial pressure, right ventricular failure, and death. We have previously shown that genistein rescues preexisting established PH by significantly improving lung and heart function. (Matori H, Umar S, Nadadur RD, Sharma S, Partow-Navid R, Afkhami M, Amjedi M, Eghbali M. Hypertension 60: 425-430, 2012). Here, we have examined the role of microRNAs (miRs) in the rescue action of genistein in monocrotaline (MCT)-induced PH in rats. Our miR microarray analysis on the lung samples from control, PH, and genistein-rescue group revealed that miR206, which was robustly upregulated to â¼11-fold by PH, was completely normalized to control levels by genistein treatment. Next, we examined whether knockdown of miR206 could reverse preexisting established PH. PH was induced in male rats by 60 mg/kg of MCT, and rats received three intratracheal doses of either miR206 antagomir (10 mg/kg body wt) or scrambled miR control at days 17, 21, and 26. Knockdown of miR206 resulted in significant improvement in the cardiopulmonary function, as right ventricular pressure was significantly reduced to 38.6 ± 3.61 mmHg from 61.2 ± 5.4 mmHg in PH, and right ventricular hypertrophy index was decreased to 0.35 ± 0.04 from 0.59 ± 0.037 in PH. Knockdown of miR206 reversed PH-induced pulmonary vascular remodeling in vivo and was associated with restoration of PH-induced loss of capillaries in the lungs and induction of vascular endothelial growth factor A expression. In conclusion, miR206 antagomir therapy improves cardiopulmonary function and structure and rescues preexisting severe PH in MCT rat model possibly by stimulating angiogenesis in the lung.
Assuntos
Indutores da Angiogênese/uso terapêutico , Genisteína/uso terapêutico , Hipertensão Pulmonar/tratamento farmacológico , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Animais , Capilares/patologia , Eletrocardiografia , Técnicas de Silenciamento de Genes , Genisteína/farmacologia , Testes de Função Cardíaca , Hipertensão Pulmonar/induzido quimicamente , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/fisiopatologia , Pulmão/patologia , Masculino , Monocrotalina , Neovascularização Fisiológica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Testes de Função Respiratória , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genéticaRESUMO
BACKGROUND: Pulmonary arterial hypertension is a chronic lung disease associated with severe pulmonary vascular changes. A pathogenic role of oxidized lipids such as hydroxyeicosatetraenoic and hydroxyoctadecadienoic acids is well established in vascular disease. Apolipoprotein A-I mimetic peptides, including 4F, have been reported to reduce levels of these oxidized lipids and improve vascular disease. However, the role of oxidized lipids in the progression of pulmonary arterial hypertension and the therapeutic action of 4F in pulmonary arterial hypertension are not well established. METHODS AND RESULTS: We studied 2 different rodent models of pulmonary hypertension (PH): a monocrotaline rat model and a hypoxia mouse model. Plasma levels of hydroxyeicosatetraenoic and hydroxyoctadecadienoic acids were significantly elevated in PH. 4F treatment reduced these levels and rescued preexisting PH in both models. MicroRNA analysis revealed that microRNA-193-3p (miR193) was significantly downregulated in the lung tissue and serum from both patients with pulmonary arterial hypertension and rodents with PH. In vivo miR193 overexpression in the lungs rescued preexisting PH and resulted in downregulation of lipoxygenases and insulin-like growth factor-1 receptor. 4F restored PH-induced miR193 expression via transcription factor retinoid X receptor α. CONCLUSIONS: These studies establish the importance of microRNAs as downstream effectors of an apolipoprotein A-I mimetic peptide in the rescue of PH and suggest that treatment with apolipoprotein A-I mimetic peptides or miR193 may have therapeutic value.