Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cancer Sci ; 110(1): 356-365, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30375142

RESUMO

We previously identified a novel nanomagnetic particle, N,N'-bis(salicylidene)ethylenediamine iron [Fe(Salen)]. Fe(Salen) not only shows antitumor effects but also magnetic properties. We found that Fe(Salen) can be used for magnet-guided drug delivery and visualization of accumulated drug by magnetic resonance imaging (MRI) because of its magnetism. In addition, Fe(Salen) can generate heat by itself when exposed to an alternating current magnetic field (AMF), resulting in a hyperthermia effect. Herein, we partly elucidated the antitumor mechanism of Fe(Salen) and carried out an i.v. repeated dose toxicity study to decide the therapeutic amount. Furthermore, we evaluated the antitumor effect of selective intra-arterial injection or i.v. injection of Fe(Salen) by catheter and the hyperthermia effect of Fe(Salen) when exposed to AMF in vivo. We used a rabbit model grafted with VX2 cells (rabbit squamous cell carcinoma) on the right leg. Intra-arterial injection of Fe(Salen) showed a greater antitumor effect than did i.v. injection. The combination of Fe(Salen) intra-arterial injection and AMF exposure showed a greater antitumor effect than did either Fe(Salen) or methotrexate (MTX) without AMF exposure, suggesting that AMF exposure greatly enhanced the antitumor effect of Fe(Salen) by arterial injection by catheter. This is the first report that the effectiveness of Fe(Salen) was evaluated in the point of administration route; that is, selective intra-arterial injection by catheter. Taken together, these results indicate a new administration route; that is, selective arterial injection of Fe(Salen) by catheter, and the development of a new strategy of simultaneous hyperthermia-chemotherapy in the future.


Assuntos
Carcinoma de Células Escamosas/terapia , Neoplasias Femorais/terapia , Hipertermia Induzida/métodos , Compostos de Ferro/administração & dosagem , Nanopartículas/administração & dosagem , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Injeções Intra-Arteriais , Injeções Intravenosas , Compostos de Ferro/farmacologia , Campos Magnéticos , Masculino , Metotrexato/administração & dosagem , Metotrexato/farmacologia , Coelhos , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cancer Sci ; 109(11): 3483-3493, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30155931

RESUMO

We previously reported the efficacy of anti-cancer therapy with hyperthermia using an alternating magnetic field (AMF) and a magnetic compound. In the course of the study, unexpectedly, we found that an AMF enhances the cytotoxicity of Compound C, an activated protein kinase (AMPK) inhibitor, although this compound is not magnetic. Therefore, we examined the cellular mechanism of AMF-induced cytotoxicity of Compound C in cultured human glioblastoma (GB) cells. An AMF (280 kHz, 250 Arms) for 30 minutes significantly enhanced the cytotoxicity of Compound C and promoted apoptosis towards several human GB cell lines in vitro. The AMF also increased Compound C-induced cell-cycle arrest of GB cells at the G2 phase and, thus, inhibited cell proliferation. The AMF increased Compound C-induced reactive oxygen species production. Furthermore, the AMF decreased ERK phosphorylation in the presence of Compound C and suppressed the protective autophagy induced by this compound. The application of an AMF in cancer chemotherapy may be a simple and promising method, which might reduce the doses of drugs used in future cancer treatment and, therefore, the associated side effects.


Assuntos
Neoplasias Encefálicas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glioblastoma/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Humanos , Hipertermia Induzida , Campos Magnéticos , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
3.
Oncotarget ; 9(21): 15591-15605, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29643995

RESUMO

N,N'-Bis(salicylidene)ethylenediamine iron (Fe(Salen)) is an anti-cancer agent with intrinsic magnetic property. Here, we covalently linked Fe(Salen) to paclitaxel (PTX), a widely used anti-cancer drug, to obtain a magnetized paclitaxel conjugate (M-PTX), which exhibited magnetic characteristics for magnet-guided drug delivery and MRI visualization. M-PTX increased apoptosis and G2/M arrest of cultured human oral cancer cell lines in the same manner as PTX. Furthermore, marked contrast intensity was obtained in magnetic resonance imaging (MRI) of M-PTX. In a mouse oral cancer model, a permanent magnet placed on the body surface adjacent to the tumor resulted in distinct accumulation of M-PTX, and the anti-cancer effect was greater than that of M-PTX without the magnet. We believe that this strategy may improve future cancer chemotherapy by providing conventional anti-cancer drugs with novel functionalities such as magnet-guided drug delivery or MRI-based visualization/quantitation of drug distribution.

4.
J Pharmacol Sci ; 134(4): 203-210, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28779994

RESUMO

Iron-salen, i.e., µ-oxo-N,N'-bis(salicylidene)ethylenediamine iron (Fe(Salen)) was a recently identified as a new anti-cancer compound with intrinsic magnetic properties. Chelation therapy has been widely used in management of metallic poisoning, because an administration of agents that bind metals can prevent potential lethal effects of particular metal. In this study, we confirmed the therapeutic effect of deferoxamine mesylate (DFO) chelation against Fe(Salen) as part of the chelator antidote efficacy. DFO administration resulted in reduced cytotoxicity and ROS generation by Fe(Salen) in cancer cells. DFO (25 mg/kg) reduced the onset of Fe(Salen) (25 mg/kg)-induced acute liver and renal dysfunction. DFO (300 mg/kg) improves survival rate after systematic injection of a fatal dose of Fe(Salen) (200 mg/kg) in mice. DFO enables the use of higher Fe(Salen) doses to treat progressive states of cancer, and it also appears to decrease the acute side effects of Fe(Salen). This makes DFO a potential antidote candidate for Fe(Salen)-based cancer treatments, and this novel strategy could be widely used in minimally-invasive clinical settings.


Assuntos
Antídotos , Antineoplásicos/efeitos adversos , Antineoplásicos/toxicidade , Quelantes/efeitos adversos , Quelantes/toxicidade , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Etilenodiaminas/efeitos adversos , Etilenodiaminas/toxicidade , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Ferro/efeitos adversos , Ferro/toxicidade , Injúria Renal Aguda/induzido quimicamente , Animais , Antineoplásicos/administração & dosagem , Quelantes/administração & dosagem , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Relação Dose-Resposta a Droga , Etilenodiaminas/administração & dosagem , Humanos , Ferro/administração & dosagem , Coelhos , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas
5.
Nanoscale ; 9(26): 9071-9082, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28639680

RESUMO

Ultrafine Au quantum clusters (QCs) were synthesized by etching host Au nanoparticles in the presence of ethylenediamine (en) and exhibited both strong photoluminescence (PL) and specific anticancer activity. The cutting-edge feature of this QC compound comprises subnanometer-size rhombohedral Au8, which consists of 8 units of the anticancer motif, namely, an Au+(en) complex (Au(en)QCs), which contributes to photo- and physicochemical stability as well as subcellular theranostic activity in intracellular PL imaging and in situ targeting. Moreover, the Au(en)QCs can be surface-encapsulated by transferrins (Tf) to create TfAu(en)QCs as a multipurpose drug carrier owing to numerous merits, which include cancer-selective biolabeling, high loading/release efficiency, high activity against drug-resistant tumor cells, low toxicity to normal cells, and physiological stability against biothiols, e.g., glutathiones. These versatile features, which are due to intrinsic optical and anticancer properties, provide potential as a single-drug delivery PL probe for preclinical applications, which has yet to be achieved using conventional nanoclusters.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Ouro , Nanopartículas Metálicas/química , Pontos Quânticos , Linhagem Celular Tumoral , Etilenodiaminas , Fluorescência , Células HeLa , Humanos , Luminescência , Transferrinas/química
6.
Sci Rep ; 7: 42783, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28218292

RESUMO

We previously reported that µ-oxo N,N'-bis(salicylidene)ethylenediamine iron [Fe(Salen)], a magnetic organic compound, has direct anti-tumor activity, and generates heat in an alternating magnetic field (AMF). We showed that Fe(Salen) nanoparticles are useful for combined hyperthermia-chemotherapy of tongue cancer. Here, we have examined the effect of Fe(Salen) on human glioblastoma (GB). Fe(Salen) showed in vitro anti-tumor activity towards several human GB cell lines. It inhibited cell proliferation, and its apoptosis-inducing activity was greater than that of clinically used drugs. Fe(Salen) also showed in vivo anti-tumor activity in the mouse brain. We evaluated the drug distribution and systemic side effects of intracerebrally injected Fe(Salen) nanoparticles in rats. Further, to examine whether hyperthermia, which was induced by exposing Fe(Salen) nanoparticles to AMF, enhanced the intrinsic anti-tumor effect of Fe(Salen), we used a mouse model grafted with U251 cells on the left leg. Fe(Salen), BCNU, or normal saline was injected into the tumor in the presence or absence of AMF exposure. The combination of Fe(Salen) injection and AMF exposure showed a greater anti-tumor effect than did either Fe(Salen) or BCNU alone. Our results indicate that hyperthermia and chemotherapy with single-drug nanoparticles could be done for GB treatment.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/terapia , Etilenodiaminas/administração & dosagem , Glioblastoma/terapia , Hipertermia Induzida/métodos , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Etilenodiaminas/farmacologia , Humanos , Camundongos , Nanopartículas , Ratos , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Sci Rep ; 6: 24629, 2016 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-27103308

RESUMO

We previously investigated the utility of µ-oxo N,N'- bis(salicylidene)ethylenediamine iron (Fe(Salen)) nanoparticles as a new anti-cancer agent for magnet-guided delivery with anti-cancer activity. Fe(Salen) nanoparticles should rapidly heat up in an alternating magnetic field (AMF), and we hypothesized that these single-drug nanoparticles would be effective for combined hyperthermia-chemotherapy. Conventional hyperthermic particles are usually made of iron oxide, and thus cannot exhibit anti-cancer activity in the absence of an AMF. We found that Fe(Salen) nanoparticles induced apoptosis in cultured cancer cells, and that AMF exposure enhanced the apoptotic effect. Therefore, we evaluated the combined three-fold strategy, i.e., chemotherapy with Fe(Salen) nanoparticles, magnetically guided delivery of the nanoparticles to the tumor, and AMF-induced heating of the nanoparticles to induce local hyperthermia, in a rabbit model of tongue cancer. Intravenous administration of Fe(Salen) nanoparticles per se inhibited tumor growth before the other two modalities were applied. This inhibition was enhanced when a magnet was used to accumulate Fe(Salen) nanoparticles at the tongue. When an AMF was further applied (magnet-guided chemotherapy plus hyperthermia), the tumor masses were dramatically reduced. These results indicate that our strategy of combined hyperthermia-chemotherapy using Fe(Salen) nanoparticles specifically delivered with magnetic guidance represents a powerful new approach for cancer treatment.


Assuntos
Antineoplásicos/uso terapêutico , Tratamento Farmacológico/métodos , Hipertermia Induzida/métodos , Compostos de Ferro/uso terapêutico , Nanopartículas/uso terapêutico , Neoplasias da Língua/tratamento farmacológico , Animais , Apoptose , Linhagem Celular Tumoral , Modelos Animais de Doenças , Coelhos , Resultado do Tratamento
8.
Sci Rep ; 5: 9194, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25779357

RESUMO

Research on controlled drug delivery for cancer chemotherapy has focused mainly on ways to deliver existing anti-cancer drug compounds to specified targets, e.g., by conjugating them with magnetic particles or encapsulating them in micelles. Here, we show that an iron-salen, i.e., µ-oxo N,N'- bis(salicylidene)ethylenediamine iron (Fe(Salen)), but not other metal salen derivatives, intrinsically exhibits both magnetic character and anti-cancer activity. X-Ray crystallographic analysis and first principles calculations based on the measured structure support this. It promoted apoptosis of various cancer cell lines, likely, via production of reactive oxygen species. In mouse leg tumor and tail melanoma models, Fe(Salen) delivery with magnet caused a robust decrease in tumor size, and the accumulation of Fe(Salen) was visualized by magnetic resonance imaging. Fe(Salen) is an anti-cancer compound with magnetic property, which is suitable for drug delivery and imaging. We believe such magnetic anti-cancer drugs have the potential to greatly advance cancer chemotherapy for new theranostics and drug-delivery strategies.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Etilenodiaminas/química , Ferro/química , Nanopartículas de Magnetita/química , Camundongos , Estrutura Molecular , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/patologia
9.
J Physiol Sci ; 64(3): 177-83, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24619404

RESUMO

Hyperthermia is a promising anti-cancer treatment in which the tissue temperature is increased to 42-45 °C, and which is often used in combination with chemotherapy or radiation therapy. Our aim in the present work was to examine the feasibility of combination therapy for oral cancer with cisplatin and hyperthermia generated with ferucarbotran (Resovist(®); superparamagnetic iron oxide) in an alternating magnetic field (AMF). First, we established that administration of ferucarbotran at the approved dosage for magnetic resonance imaging provides an iron concentration sufficient to increase the temperature to 42.5 °C upon exposure to AMF. Then, we examined the effect of cisplatin combined with ferucarbotran/AMF-induced hyperthermia on cultured human oral cancer cells (HSC-3 and OSC-19). Cisplatin alone induced apoptosis of cancer cells in a dose-dependent manner, as is well known. However, the combination of cisplatin with ferucarbotran/AMF was significantly more effective than cisplatin alone. This result suggests that it might be possible to reduce the clinically effective dosage of cisplatin by administering it in combination with ferucarbotran/AMF-induced hyperthermia, thereby potentially reducing the incidence of serious cisplatin-related side effects. Further work seems justified to evaluate simultaneous thermo-chemotherapy as a new approach to anticancer therapy.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/patologia , Cisplatino/farmacologia , Dextranos , Neoplasias de Cabeça e Pescoço/patologia , Hipertermia Induzida/métodos , Campos Magnéticos , Nanopartículas de Magnetita , Neoplasias Bucais/patologia , Linhagem Celular Tumoral , Quimioterapia Adjuvante , Relação Dose-Resposta a Droga , Estudos de Viabilidade , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Fatores de Tempo
10.
J Physiol Sci ; 62(3): 251-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22392350

RESUMO

Cellular reactive oxygen species (ROS) production is increased by both temperature and anticancer drugs. Antioxidants are known to suppress ROS production while cancer patients may take them as dietary supplement during chemotherapy and hyperthermic therapy. We examined changes in ROS production in prostate cancer cells in the presence of various anticancer drugs and antioxidants at different temperatures. ROS production was increased with temperature in cancer cells, but not in normal cells; this increase was potently inhibited by ascorbic acid. ROS production was also increased in the presence of some anticancer drugs, such as vinblastine, but not by others. Dietary antioxidant supplements, such as ß-carotene, showed variable effects. Ascorbic acid potently inhibited ROS production, even in the presence of anticancer drugs, while ß-carotene showed no inhibition. Accordingly, our results suggest that cancer patients should carefully choose antioxidants during their cancer chemotherapy and/or hyperthermic therapy.


Assuntos
Antineoplásicos/uso terapêutico , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Hipertermia Induzida , Neoplasias da Próstata/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Animais , Dextranos/farmacologia , Nanopartículas de Magnetita , Masculino , Ratos , Células Tumorais Cultivadas
11.
Drug Metab Lett ; 1(3): 176-8, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19356040

RESUMO

Certain anti-cancer prodrugs are subject to cytochrome P450 (CYP)-mediated metabolism and become more active. Because CYP activity may be regulated by phosphorylation via adenylyl cyclase/protein kinase A, selective adenylyl cyclase subtype activators may be utilized in future chemotherapy to regulate CYP activity as a switch in a tumor tissue-specific manner.


Assuntos
Antineoplásicos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Pró-Fármacos/metabolismo , Adenilil Ciclases/metabolismo , Animais , Antineoplásicos/uso terapêutico , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativadores de Enzimas/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Fosforilação , Pró-Fármacos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA