Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Microbiol ; 50(2): 246-57, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22135254

RESUMO

Persistent infections by high-risk human papillomaviruses (HPVs) are the main etiological factor for cervical cancer, and expression of HPV E7 oncoproteins was suggested to be a potential marker for tumor progression. The objective of this study was to generate new reagents for the detection of the HPV18 E7 oncoprotein in cervical smears. Rabbit monoclonal antibodies against recombinant E7 protein of HPV type 18 (HPV18) were generated and characterized using Western blotting, epitope mapping, indirect immunofluorescence, and immunohistochemistry. One clone specifically recognizing HPV18 E7 was used for the development of a sandwich enzyme-linked immunosorbent assay (ELISA). The assay was validated using recombinant E7 proteins of various HPV types and lysates from E7-positive cervical carcinoma cells. A total of 14 HPV18 DNA-positive cervical swab specimens and 24 HPV DNA-negative-control specimens were used for the determination of E7 protein levels by the newly established sandwich ELISA. On the basis of the average absorbance values obtained from all 24 negative controls, a cutoff above which a clinical sample can be judged E7 positive was established. Significant E7 signals 6- to 30-fold over background were found in 7 out of 14 abnormal HPV18 DNA-positive cervical smear specimens. This feasibility study demonstrates for the first time that HPV18 E7 oncoprotein can be detected in cervical smears.


Assuntos
Detecção Precoce de Câncer/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Papillomavirus Humano 18/isolamento & purificação , Proteínas E7 de Papillomavirus/análise , Infecções por Papillomavirus/diagnóstico , Vagina/virologia , Virologia/métodos , Anticorpos Monoclonais , Estudos de Viabilidade , Feminino , Papillomavirus Humano 18/imunologia , Humanos , Proteínas E7 de Papillomavirus/imunologia , Esfregaço Vaginal
2.
Virology ; 409(1): 54-68, 2011 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-20970819

RESUMO

E7 is the major oncoprotein of high-risk human papillomaviruses (HPV) which causes cervical cancer. To date E7 oncoproteins have not been investigated in cervical adenocarcinoma. In this study we generated a rabbit monoclonal anti-HPV-16 E7 antibody, RabMab42-3, which recognizes a conformational epitope in the E7 carboxy-terminal zinc-finger resulting in a strong increase in the sensitivity for the detection of cell-associated HPV-16 E7 protein relative to conventional polyclonal anti-HPV-16 E7 antibodies. Using RabMab42-3, we show that the subcellular localization of endogenous HPV-16 E7 oncoprotein varies during the cell cycle in cervical cancer cells. Moreover, we demonstrate for the first time that the HPV-16 E7 oncoprotein is abundantly expressed in cervical adenocarcinoma in situ and adenocarcinoma, suggesting an important role of HPV-16 E7 for the development of these tumors. Our findings suggest that the HPV-16 E7 oncoprotein could be a useful marker for the detection of cervical adenocarcinoma and their precursors.


Assuntos
Adenocarcinoma/virologia , Papillomavirus Humano 16/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Frações Subcelulares/metabolismo , Neoplasias do Colo do Útero/virologia , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Linhagem Celular Tumoral , Feminino , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas E7 de Papillomavirus/química , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Coelhos , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
3.
J Cell Biochem ; 107(2): 293-302, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19308990

RESUMO

Pyruvate kinase M2 (M2-PK) controls the rate-limiting step at the end of the glycolytic pathway in normal proliferating and tumor cells. Other functions of M2-PK in addition to its role in glycolysis are little understood. The aim of this study was to identify new cellular interaction partners of M2-PK in order to discover novel links between M2-PK and cellular functions. Here we show that the SUMO-E3 ligase protein PIAS3 (inhibitor of activated STAT3) physically interacts with M2-PK and its isoenzyme M1-PK. Moreover, we demonstrate that endogenous SUMO-1-M2-PK conjugates exist in mammalian cells. Furthermore, we show that transient expression of PIAS3 but not the RING domain mutant PIAS3 (C299S, H301A) is consistent with nuclear localization of M2-PK and PIAS3 and M2-PK partially co-localize in the nucleus of these cells. This study suggests a link between PIAS3 and nuclear pyruvate kinase.


Assuntos
Chaperonas Moleculares/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Piruvato Quinase/metabolismo , Transdução de Sinais/fisiologia , Western Blotting , Imunofluorescência , Humanos , Imunoprecipitação , Proteína SUMO-1/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA