Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5583, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38448490

RESUMO

In this report, we present OLAF-Seq, a novel strategy to construct a long-read sequencing library such that adjacent fragments are linked with end-terminal duplications. We use the CRISPR-Cas9 nickase enzyme and a pool of multiple sgRNAs to perform non-random fragmentation of targeted long DNA molecules (> 300kb) into smaller library-sized fragments (about 20 kbp) in a manner so as to retain physical linkage information (up to 1000 bp) between adjacent fragments. DNA molecules targeted for fragmentation are preferentially ligated with adaptors for sequencing, so this method can enrich targeted regions while taking advantage of the long-read sequencing platforms. This enables the sequencing of target regions with significantly lower total coverage, and the genome sequence within linker regions provides information for assembly and phasing. We demonstrated the validity and efficacy of the method first using phage and then by sequencing a panel of 100 full-length cancer-related genes (including both exons and introns) in the human genome. When the designed linkers contained heterozygous genetic variants, long haplotypes could be established. This sequencing strategy can be readily applied in both PacBio and Oxford Nanopore platforms for both long and short genes with an easy protocol. This economically viable approach is useful for targeted enrichment of hundreds of target genomic regions and where long no-gap contigs need deep sequencing.


Assuntos
Bacteriófagos , RNA Guia de Sistemas CRISPR-Cas , Humanos , Análise de Sequência de DNA , Genômica , Proteína 9 Associada à CRISPR , DNA/genética
2.
Microbiome ; 6(1): 190, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30352611

RESUMO

BACKGROUND: Pan-bacterial 16S rRNA microbiome surveys performed with massively parallel DNA sequencing technologies have transformed community microbiological studies. Current 16S profiling methods, however, fail to provide sufficient taxonomic resolution and accuracy to adequately perform species-level associative studies for specific conditions. This is due to the amplification and sequencing of only short 16S rRNA gene regions, typically providing for only family- or genus-level taxonomy. Moreover, sequencing errors often inflate the number of taxa present. Pacific Biosciences' (PacBio's) long-read technology in particular suffers from high error rates per base. Herein, we present a microbiome analysis pipeline that takes advantage of PacBio circular consensus sequencing (CCS) technology to sequence and error correct full-length bacterial 16S rRNA genes, which provides high-fidelity species-level microbiome data. RESULTS: Analysis of a mock community with 20 bacterial species demonstrated 100% specificity and sensitivity with regard to taxonomic classification. Examination of a 250-plus species mock community demonstrated correct species-level classification of > 90% of taxa, and relative abundances were accurately captured. The majority of the remaining taxa were demonstrated to be multiply, incorrectly, or incompletely classified. Using this methodology, we examined the microgeographic variation present among the microbiomes of six sinonasal sites, by both swab and biopsy, from the anterior nasal cavity to the sphenoid sinus from 12 subjects undergoing trans-sphenoidal hypophysectomy. We found greater variation among subjects than among sites within a subject, although significant within-individual differences were also observed. Propiniobacterium acnes (recently renamed Cutibacterium acnes) was the predominant species throughout, but was found at distinct relative abundances by site. CONCLUSIONS: Our microbial composition analysis pipeline for single-molecule real-time 16S rRNA gene sequencing (MCSMRT, https://github.com/jpearl01/mcsmrt ) overcomes deficits of standard marker gene-based microbiome analyses by using CCS of entire 16S rRNA genes to provide increased taxonomic and phylogenetic resolution. Extensions of this approach to other marker genes could help refine taxonomic assignments of microbial species and improve reference databases, as well as strengthen the specificity of associations between microbial communities and dysbiotic states.


Assuntos
Bactérias/classificação , Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Microbiota/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Bactérias/isolamento & purificação , Sequência de Bases , DNA Bacteriano/genética , Humanos , Hipofisectomia , Metagenoma/genética , Tipagem Molecular/métodos , Seios Paranasais/microbiologia , Filogenia
3.
mBio ; 9(5)2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30254117

RESUMO

Tracking bacterial evolution during chronic infection provides insights into how host selection pressures shape bacterial genomes. The human-restricted opportunistic pathogen nontypeable Haemophilus influenzae (NTHi) infects the lower airways of patients suffering chronic obstructive pulmonary disease (COPD) and contributes to disease progression. To identify bacterial genetic variation associated with bacterial adaptation to the COPD lung, we sequenced the genomes of 92 isolates collected from the sputum of 13 COPD patients over 1 to 9 years. Individuals were colonized by distinct clonal types (CTs) over time, but the same CT was often reisolated at a later time or found in different patients. Although genomes from the same CT were nearly identical, intra-CT variation due to mutation and recombination occurred. Recurrent mutations in several genes were likely involved in COPD lung adaptation. Notably, nearly a third of CTs were polymorphic for null alleles of ompP1 (also called fadL), which encodes a bifunctional membrane protein that both binds the human carcinoembryonic antigen-related cell adhesion molecule 1 (hCEACAM1) receptor and imports long-chain fatty acids (LCFAs). Our computational studies provide plausible three-dimensional models for FadL's interaction with hCEACAM1 and LCFA binding. We show that recurrent fadL mutations are likely a case of antagonistic pleiotropy, since loss of FadL reduces NTHi's ability to infect epithelia but also increases its resistance to bactericidal LCFAs enriched within the COPD lung. Supporting this interpretation, truncated fadL alleles are common in publicly available NTHi genomes isolated from the lower airway tract but rare in others. These results shed light on molecular mechanisms of bacterial pathoadaptation and guide future research toward developing novel COPD therapeutics.IMPORTANCE Nontypeable Haemophilus influenzae is an important pathogen in patients with chronic obstructive pulmonary disease (COPD). To elucidate the bacterial pathways undergoing in vivo evolutionary adaptation, we compared bacterial genomes collected over time from 13 COPD patients and identified recurrent genetic changes arising in independent bacterial lineages colonizing different patients. Besides finding changes in phase-variable genes, we found recurrent loss-of-function mutations in the ompP1 (fadL) gene. We show that loss of OmpP1/FadL function reduces this bacterium's ability to infect cells via the hCEACAM1 epithelial receptor but also increases its resistance to bactericidal fatty acids enriched within the COPD lung, suggesting a case of antagonistic pleiotropy that restricts ΔfadL strains' niche. These results show how H. influenzae adapts to host-generated inflammatory mediators in the COPD airways.


Assuntos
Adaptação Biológica , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte de Ácido Graxo/metabolismo , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/genética , Pneumonia Bacteriana/microbiologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Idoso , Idoso de 80 Anos ou mais , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Biologia Computacional , Proteínas de Transporte de Ácido Graxo/química , Proteínas de Transporte de Ácido Graxo/genética , Variação Genética , Genoma Bacteriano , Haemophilus influenzae/classificação , Humanos , Estudos Longitudinais , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Mutação , Recombinação Genética , Análise de Sequência de DNA , Escarro/microbiologia , Sequenciamento Completo do Genoma
4.
Genome Res ; 27(4): 650-662, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28325850

RESUMO

Chronic bacterial infections of the lung are the leading cause of morbidity and mortality in cystic fibrosis patients. Tracking bacterial evolution during chronic infections can provide insights into how host selection pressures-including immune responses and therapeutic interventions-shape bacterial genomes. We carried out genomic and phenotypic analyses of 215 serially collected Burkholderia cenocepacia isolates from 16 cystic fibrosis patients, spanning a period of 2-20 yr and a broad range of epidemic lineages. Systematic phenotypic tests identified longitudinal bacterial series that manifested progressive changes in liquid media growth, motility, biofilm formation, and acute insect virulence, but not in mucoidy. The results suggest that distinct lineages follow distinct evolutionary trajectories during lung infection. Pan-genome analysis identified 10,110 homologous gene clusters present only in a subset of strains, including genes restricted to different molecular types. Our phylogenetic analysis based on 2148 orthologous gene clusters from all isolates is consistent with patient-specific clades. This suggests that initial colonization of patients was likely by individual strains, followed by subsequent diversification. Evidence of clonal lineages shared by some patients was observed, suggesting inter-patient transmission. We observed recurrent gene losses in multiple independent longitudinal series, including complete loss of Chromosome III and deletions on other chromosomes. Recurrently observed loss-of-function mutations were associated with decreases in motility and biofilm formation. Together, our study provides the first comprehensive genome-phenome analyses of B. cenocepacia infection in cystic fibrosis lungs and serves as a valuable resource for understanding the genomic and phenotypic underpinnings of bacterial evolution.


Assuntos
Infecções por Burkholderia/microbiologia , Burkholderia cenocepacia/genética , Fibrose Cística/microbiologia , Fenótipo , Polimorfismo Genético , Adolescente , Animais , Biofilmes , Infecções por Burkholderia/complicações , Burkholderia cenocepacia/isolamento & purificação , Burkholderia cenocepacia/patogenicidade , Burkholderia cenocepacia/fisiologia , Criança , Pré-Escolar , Fibrose Cística/complicações , Genótipo , Humanos , Pulmão/microbiologia , Mariposas/microbiologia , Virulência , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA