Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Environ Sci Pollut Res Int ; 31(7): 10594-10608, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198090

RESUMO

Cadmium significantly impacts plant growth and productivity by disrupting physiological, biochemical, and oxidative defenses, leading to severe damage. The application of Zn-Lys improves plant growth while reducing the stress caused by heavy metals on plants. By focusing on cadmium stress and potential of Zn-Lys on pea, we conducted a pot-based study, organized under completely randomized block design CRD-factorial at the Botanical Garden of Government College University, Faisalabad. Both pea cultivars were grown in several concentrations of cadmium @ 0, 50 and 100 µM, and Zn-Lys were exogenously applied @ 0 mg/L and 10 mg/L with three replicates for each treatment. Cd-toxicity potentially reduces plant growth, chlorophyll contents, osmoprotectants, and anthocyanin content; however, an increase in MDA, H2O2 initiation, enzymatic antioxidant activities as well as phenolic, flavonoid, proline was observed. Remarkably, exogenously applied Zn-Lys significantly enhanced the plant growth, biomass, photosynthetic attributes, osmoprotectants, and anthocyanin contents, while further increase in enzymatic antioxidant activities, total phenolic, flavonoid, and proline contents were noticed. However, application of Zn-Lys instigated a remarkable decrease in levels of MDA and H2O2. It can be suggested with recommendation to check the potential of Zn-Lys on plants under cadmium-based toxic soil.


Assuntos
Antioxidantes , Poluentes do Solo , Humanos , Cádmio , Pisum sativum , Peróxido de Hidrogênio , Antocianinas , Zinco , Prolina , Suplementos Nutricionais , Poluentes do Solo/análise
3.
Int J Biol Macromol ; 256(Pt 1): 128379, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000583

RESUMO

Extreme changes in weather including heat-wave and high-temperature fluctuations are predicted to increase in intensity and duration due to climate change. Wheat being a major staple crop is under severe threat of heat stress especially during the grain-filling stage. Widespread food insecurity underscores the critical need to comprehend crop responses to forthcoming climatic shifts, pivotal for devising adaptive strategies ensuring sustainable crop productivity. This review addresses insights concerning antioxidant, physiological, molecular impacts, tolerance mechanisms, and nanotechnology-based strategies and how wheat copes with heat stress at the reproductive stage. In this study stress resilience strategies were documented for sustainable grain production under heat stress at reproductive stage. Additionally, the mechanisms of heat resilience including gene expression, nanomaterials that trigger transcription factors, (HSPs) during stress, and physiological and antioxidant traits were explored. The most reliable method to improve plant resilience to heat stress must include nano-biotechnology-based strategies, such as the adoption of nano-fertilizers in climate-smart practices and the use of advanced molecular approaches. Notably, the novel resistance genes through advanced molecular approach and nanomaterials exhibit promise for incorporation into wheat cultivars, conferring resilience against imminent adverse environmental conditions. This review will help scientific communities in thermo-tolerance wheat cultivars and new emerging strategies to mitigate the deleterious impact of heat stress.


Assuntos
Proteínas de Choque Térmico , Triticum , Proteínas de Choque Térmico/genética , Triticum/genética , Mudança Climática , Antioxidantes , Resposta ao Choque Térmico , Grão Comestível/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA