Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 250: 114514, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608563

RESUMO

Endocrine disruptors (EDs), capable of modulating the sex hormone system of an organism, can exert long-lasting negative effects on reproduction in both humans and the environment. For these reasons, the properties of EDs prevent a substance from being approved for marketing. However, regulatory testing to evaluate endocrine disruption is time-consuming, costly, and animal-intensive. Here, we combined sublethal zebrafish embryo assays with transcriptomics and proteomics for well-characterized endocrine disrupting reference compounds to identify predictive biomarkers for sexual endocrine disruption in this model. Using RNA and protein gene expression fingerprints from two different sublethal exposure concentrations, we identified specific signatures and impaired biological processes induced by ethinylestradiol, tamoxifen, methyltestosterone and flutamide 96 h post fertilization (hpf). Our study promotes vtg1 as well as cyp19a1b, fam20cl, lhb, lpin1, nr1d1, fbp1b, and agxtb as promising biomarker candidates for identifying and differentiating estrogen and androgen receptor agonism and antagonism. Evaluation of these biomarkers for pre-regulatory zebrafish embryo-based bioassays will help identify endocrine disrupting hazards of compounds at the molecular level. Such approaches additionally provide weight-of-evidence for the identification of putative EDs and may contribute significantly to a reduction in animal testing in higher tier studies.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Biomarcadores/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Sistema Endócrino , Estrogênios/metabolismo , Expressão Gênica , Fosfatidato Fosfatase/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética
2.
Environ Toxicol Pharmacol ; 76: 103353, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32086102

RESUMO

Nanomaterials have gained huge importance in various fields including nanomedicine. Nanoformulations of drugs and nanocarriers are used to increase pharmaceutical potency. However, it was seen that polymeric nanomaterials can cause negative effects. Thus, it is essential to identify nanomaterials with the least adverse effects on aquatic organisms. To determine the toxicity of polymeric nanomaterials, we investigated the effects of poly(lactic-co-glycolid) acid (PLGA), Eudragit® E 100 and hydroxylpropyl methylcellulose phthalate (HPMCP) on zebrafish embryos using the fish embryo toxicity test (FET). Furthermore, we studied Cremophor® RH40, Cremophor® A25, Pluronic® F127 and Pluronic® F68 applied in the generation of nanoformulations to identify the surfactant with minimal toxic impact. The order of ecotoxicty was HPMCP < PLGA < Eudragit® E100 and Pluronic® F68 < Pluronic® F127 < Cremophor® RH40 < Cremophor® A25. In summary, HPMCP and Pluronic® F68 displayed the least toxic impact, thus suggesting adequate environmental compatibility for the generation of nanomedicines.


Assuntos
Poluentes Ambientais/toxicidade , Nanoestruturas/toxicidade , Polímeros/química , Tensoativos/toxicidade , Animais , Embrião não Mamífero/efeitos dos fármacos , Nanoestruturas/química , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Tensoativos/química , Testes de Toxicidade , Peixe-Zebra
3.
Sci Total Environ ; 717: 134743, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31836225

RESUMO

Bisphenol A (BPA) is a high production volume chemical with a broad application spectrum. As an endocrine disrupting chemical, mainly by modulation of nuclear receptors (NRs), BPA has an adverse impact on organisms and is identified as a substance of very high concern under the European REACH regulation. Various BPA substitution candidates have been developed in recent years, however, information concerning the endocrine disrupting potential of these substances is still incomplete or missing. In this study, we intended to investigate the endocrine potential of BPA substitution candidates used in environmentally relevant applications such as thermal paper or epoxy resins. Based on an extensive literature and patent search, 33 environmentally relevant BPA substitution candidates were identified. In order to evaluate the endocrine potential of the BPA replacements, a screening cascade consisting of biochemical and cell-based assays was employed to investigate substance binding to the NRs estrogen receptor α and ß, as well as androgen receptor, co-activator recruitment and NR-mediated reporter gene activation. In addition, a computational docking approach for retrospective prediction of receptor binding was carried out. Our results show that some BPA substitution candidates, for which so far no or only very few data were available, possess a substantial endocrine disrupting potential (TDP, BPZ), while several substances (BPS, D-8, DD70, DMP-OH, TBSA, D4, CBDO, ISO, VITC, DPA, and DOPO) did not reveal any NR binding.


Assuntos
Compostos Benzidrílicos/química , Fenóis/química , Disruptores Endócrinos , Receptores Androgênicos , Estudos Retrospectivos
4.
Sci Rep ; 9(1): 6599, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036921

RESUMO

The fish short-term reproduction assay (FSTRA) is a common in vivo screening assay for assessing endocrine effects of chemicals on reproduction in fish. However, the current reliance on measures such as egg number, plasma vitellogenin concentration and morphological changes to determine endocrine effects can lead to false labelling of chemicals with non-endocrine modes- of-action. Here, we integrated quantitative liver and gonad shotgun proteomics into the FSTRA in order to investigate the causal link between an endocrine mode-of-action and adverse effects assigned to the endocrine axis. Therefore, we analyzed the molecular effects of fadrozole-induced aromatase inhibition in zebrafish (Danio rerio). We observed a concentration-dependent decrease in fecundity, a reduction in plasma vitellogenin concentrations and a mild oocyte atresia with oocyte membrane folding in females. Consistent with these apical measures, proteomics revealed a significant dysregulation of proteins involved in steroid hormone secretion and estrogen stimulus in the female liver. In the ovary, the deregulation of estrogen synthesis and binding of sperm to zona pellucida were among the most significantly perturbed pathways. A significant deregulation of proteins targeting the transcriptional activity of estrogen receptor (esr1) was observed in male liver and testis. Our results support that organ- and sex-specific quantitative proteomics represent a promising tool for identifying early gene expression changes preceding chemical-induced adverse outcomes. These data can help to establish consistency in chemical classification and labelling.


Assuntos
Sistema Endócrino/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Proteômica , Poluentes Químicos da Água/toxicidade , Proteínas de Peixe-Zebra/genética , Animais , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/toxicidade , Estrogênios/metabolismo , Fadrozol/farmacologia , Fadrozol/toxicidade , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hormônios Esteroides Gonadais/antagonistas & inibidores , Hormônios Esteroides Gonadais/biossíntese , Gônadas/efeitos dos fármacos , Gônadas/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Reprodução/efeitos dos fármacos , Testículo/efeitos dos fármacos , Poluentes Químicos da Água/farmacologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA