Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(11): e0207464, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30485322

RESUMO

Over the last decade, the γ-H2AX focus assay, which exploits the phosphorylation of the H2AX histone following DNA double-strand-breaks, has made considerable progress towards acceptance as a reliable biomarker for exposure to ionizing radiation. While the existing literature has convincingly demonstrated a dose-response effect, and also presented approaches to dose estimation based on appropriately defined calibration curves, a more widespread practical use is still hampered by a certain lack of discussion and agreement on the specific dose-response modelling and uncertainty quantification strategies, as well as by the unavailability of implementations. This manuscript intends to fill these gaps, by stating explicitly the statistical models and techniques required for calibration curve estimation and subsequent dose estimation. Accompanying this article, a web applet has been produced which implements the discussed methods.


Assuntos
Histonas/metabolismo , Modelos Biológicos , Doses de Radiação , Exposição à Radiação , Humanos
2.
Int J Radiat Biol ; 93(1): 127-135, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27572921

RESUMO

PURPOSE: Reliable dose estimation is an important factor in appropriate dosimetric triage categorization of exposed individuals to support radiation emergency response. MATERIALS AND METHODS: Following work done under the EU FP7 MULTIBIODOSE and RENEB projects, formal methods for defining uncertainties on biological dose estimates are compared using simulated and real data from recent exercises. RESULTS: The results demonstrate that a Bayesian method of uncertainty assessment is the most appropriate, even in the absence of detailed prior information. The relative accuracy and relevance of techniques for calculating uncertainty and combining assay results to produce single dose and uncertainty estimates is further discussed. CONCLUSIONS: Finally, it is demonstrated that whatever uncertainty estimation method is employed, ignoring the uncertainty on fast dose assessments can have an important impact on rapid biodosimetric categorization.


Assuntos
Algoritmos , Bioensaio/métodos , Exposição à Radiação/análise , Monitoramento de Radiação/métodos , Triagem/métodos , Teorema de Bayes , Europa (Continente) , Humanos , Guias de Prática Clínica como Assunto , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Biom J ; 58(2): 259-79, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26461836

RESUMO

Within the field of cytogenetic biodosimetry, Poisson regression is the classical approach for modeling the number of chromosome aberrations as a function of radiation dose. However, it is common to find data that exhibit overdispersion. In practice, the assumption of equidispersion may be violated due to unobserved heterogeneity in the cell population, which will render the variance of observed aberration counts larger than their mean, and/or the frequency of zero counts greater than expected for the Poisson distribution. This phenomenon is observable for both full- and partial-body exposure, but more pronounced for the latter. In this work, different methodologies for analyzing cytogenetic chromosomal aberrations datasets are compared, with special focus on zero-inflated Poisson and zero-inflated negative binomial models. A score test for testing for zero inflation in Poisson regression models under the identity link is also developed.


Assuntos
Aberrações Cromossômicas , Modelos Estatísticos , Biometria , Aberrações Cromossômicas/efeitos da radiação , Análise Citogenética , Humanos , Distribuição de Poisson , Radiometria , Análise de Regressão , Irradiação Corporal Total
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA