Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Leukemia ; 36(1): 80-89, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34131280

RESUMO

Assessment of measurable residual disease (MRD) upon treatment of acute myeloid leukemia (AML) remains challenging. It is usually addressed by highly sensitive PCR- or sequencing-based screening of specific mutations, or by multiparametric flow cytometry. However, not all patients have suitable mutations and heterogeneity of surface markers hampers standardization in clinical routine. In this study, we propose an alternative approach to estimate MRD based on AML-associated DNA methylation (DNAm) patterns. We identified four CG dinucleotides (CpGs) that commonly reveal aberrant DNAm in AML and their combination could reliably discern healthy and AML samples. Interestingly, bisulfite amplicon sequencing demonstrated that aberrant DNAm patterns were symmetric on both alleles, indicating that there is epigenetic crosstalk between homologous chromosomes. We trained shallow-learning and deep-learning algorithms to identify anomalous DNAm patterns. The method was then tested on follow-up samples with and without MRD. Notably, even samples that were classified as MRD negative often revealed higher anomaly ratios than healthy controls, which may reflect clonal hematopoiesis. Our results demonstrate that targeted DNAm analysis facilitates reliable discrimination of malignant and healthy samples. However, since healthy samples also comprise few abnormal-classified DNAm reads the approach does not yet reliably discriminate MRD positive and negative samples.


Assuntos
Biomarcadores Tumorais/genética , Metilação de DNA , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/patologia , Mutação , Recidiva Local de Neoplasia/patologia , Neoplasia Residual/patologia , Humanos , Leucemia Mieloide Aguda/genética , Recidiva Local de Neoplasia/genética , Neoplasia Residual/genética , Prognóstico , Taxa de Sobrevida
2.
Clin Epigenetics ; 12(1): 125, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32819411

RESUMO

BACKGROUND: Dyskeratosis congenita (DKC) and idiopathic aplastic anemia (AA) are bone marrow failure syndromes that share characteristics of premature aging with severe telomere attrition. Aging is also reflected by DNA methylation changes, which can be utilized to predict donor age. There is evidence that such epigenetic age predictions are accelerated in premature aging syndromes, but it is yet unclear how this is related to telomere length. DNA methylation analysis may support diagnosis of DKC and AA, which still remains a challenge for these rare diseases. RESULTS: In this study, we analyzed blood samples of 70 AA and 18 DKC patients to demonstrate that their epigenetic age predictions are overall increased, albeit not directly correlated with telomere length. Aberrant DNA methylation was observed in the gene PRDM8 in DKC and AA as well as in other diseases with premature aging phenotype, such as Down syndrome and Hutchinson-Gilford-Progeria syndrome. Aberrant DNA methylation patterns were particularly found within subsets of cell populations in DKC and AA samples as measured with barcoded bisulfite amplicon sequencing (BBA-seq). To gain insight into the functional relevance of PRDM8, we used CRISPR/Cas9 technology to generate induced pluripotent stem cells (iPSCs) with heterozygous and homozygous knockout. Loss of PRDM8 impaired hematopoietic and neuronal differentiation of iPSCs, even in the heterozygous knockout clone, but it did not impact on epigenetic age. CONCLUSION: Taken together, our results demonstrate that epigenetic aging is accelerated in DKC and AA, independent from telomere attrition. Furthermore, aberrant DNA methylation in PRDM8 provides another biomarker for bone marrow failure syndromes and modulation of this gene in cellular subsets may be related to the hematopoietic and neuronal phenotypes observed in premature aging syndromes.


Assuntos
Anemia Aplástica/sangue , Anemia Aplástica/genética , Metilação de DNA/genética , Proteínas de Ligação a DNA/sangue , Proteínas de Ligação a DNA/genética , Disceratose Congênita/sangue , Disceratose Congênita/genética , Histona Metiltransferases/sangue , Histona Metiltransferases/genética , Feminino , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Neurônios/metabolismo , Fenótipo , Telômero/metabolismo
3.
Stem Cell Res Ther ; 11(1): 105, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32138773

RESUMO

BACKGROUND: The use of mesenchymal stromal cells (MSCs) for research and clinical application is hampered by cellular heterogeneity and replicative senescence. Generation of MSC-like cells from induced pluripotent stem cells (iPSCs) may circumvent these limitations, and such iPSC-derived MSCs (iMSCs) are already tested in clinical trials. So far, a comparison of MSCs and iMSCs was particularly addressed in bulk culture. Despite the high hopes in cellular therapy, only little is known how the composition of different subclones changes in these cell preparations during culture expansion. METHODS: In this study, we used multicolor lentiviral genetic barcoding for the marking of individual cells within cell preparations. Based on this, we could track the clonal composition of syngenic MSCs, iPSCs, and iMSCs during culture expansion. Furthermore, we analyzed DNA methylation patterns at senescence-associated genomic regions by barcoded bisulfite amplicon sequencing. The proliferation and differentiation capacities of individual subclones within MSCs and iMSCs were investigated with limiting dilution assays. RESULTS: Overall, the clonal composition of primary MSCs and iPSCs gradually declined during expansion. In contrast, iMSCs became oligoclonal early during differentiation, indicating that they were derived from few individual iPSCs. This dominant clonal outgrowth of iMSCs was not associated with changes in chromosomal copy number variation. Furthermore, clonal dynamics were not clearly reflected by stochastically acquired DNA methylation patterns. Limiting dilution assays revealed that iMSCs are heterogeneous in colony formation and in vitro differentiation potential, while this was even more pronounced in primary MSCs. CONCLUSIONS: Our results indicate that the subclonal diversity of MSCs and iPSCs declines gradually during in vitro culture, whereas derivation of iMSCs may stem from few individual iPSCs. Differentiation regimen needs to be further optimized to achieve homogeneous differentiation of iPSCs towards iMSCs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Diferenciação Celular , Células Cultivadas , Variações do Número de Cópias de DNA
4.
J Pathol ; 248(2): 230-242, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30719704

RESUMO

We present an evolutionary analysis of the relative time of genetic events underlying tumorigenesis in human bladder cancers from 10 whole cystectomy specimens using multiregional whole-exome sequencing. We timed bladder cancer drivers, mutational signatures, ploidy and copy number alterations, provided evidence for kataegis and correlated alterations with tumour areas and histological phenotypes. We found that: (1) heterogeneous tumour areas/phenotypes had distinct driver mutations, (2) papillary-invasive tumours divided early into two parallel evolving branches and (3) parallel evolution of subclonal driver mutations occurred. APOBEC mutational signatures were found to be very early events, active in carcinoma in situ, and often remained a dominant source of mutations throughout tumour evolution. Genetic progression from carcinoma in situ followed driver mutations in NA13/FAT1, ZBTB7B or EP300/USP28/KMT2D. Our results point towards a more diverse mutational trajectory of bladder tumorigenesis and underpin the importance of timing of mutational processes and clonal architecture in bladder cancer as important aspects for successful prognostication and therapy. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma in Situ/genética , Carcinoma/genética , Sequenciamento do Exoma , Heterogeneidade Genética , Transcriptoma , Neoplasias da Bexiga Urinária/genética , Idoso , Idoso de 80 Anos ou mais , Carcinoma/tratamento farmacológico , Carcinoma/patologia , Carcinoma/cirurgia , Carcinoma in Situ/tratamento farmacológico , Carcinoma in Situ/patologia , Carcinoma in Situ/cirurgia , Cistectomia , Variações do Número de Cópias de DNA , Progressão da Doença , Feminino , Dosagem de Genes , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Mutação , Invasividade Neoplásica , Fenótipo , Ploidias , Medicina de Precisão , Fatores de Tempo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA