Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Host Microbe ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38942027

RESUMO

Gut microbiota influence anti-tumor immunity, often by producing immune-modulating metabolites. However, microbes consume a variety of metabolites that may also impact host immune responses. We show that tumors grow unchecked in the omenta of microbe-replete mice due to immunosuppressive Tregs. By contrast, omental tumors in germ-free, neomycin-treated mice or mice colonized with altered Schaedler's flora (ASF) are spontaneously eliminated by CD8+ T cells. These mice lack Proteobacteria capable of arginine catabolism, causing increases in serum arginine that activate the mammalian target of the rapamycin (mTOR) pathway in Tregs to reduce their suppressive capacity. Transfer of the Proteobacteria, Escherichia coli (E. coli), but not a mutant unable to catabolize arginine, to ASF mice reduces arginine levels, restores Treg suppression, and prevents tumor clearance. Supplementary arginine similarly decreases Treg suppressive capacity, increases CD8+ T cell effectiveness, and reduces tumor burden. Thus, microbial consumption of arginine alters anti-tumor immunity, offering potential therapeutic strategies for tumors in visceral adipose tissue.

2.
Geroscience ; 40(3): 257-268, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29869736

RESUMO

Advanced age has been associated with alterations to the microbiome within the intestinal tract as well as intestinal permeability (i.e., "leaky gut"). Prior studies suggest that intestinal permeability may contribute to increases in systemic inflammation-an aging hallmark-possibly via microorganisms entering the circulation. Yet, no studies exist describing the state of the circulating microbiome among older persons. To compare microbiota profiles in serum between healthy young (20-35 years, n = 24) and older adults (60-75 years, n = 24) as well as associations between differential microbial populations and prominent indices of age-related inflammation. Unweighted Unifrac analysis, a measure of ß-diversity, revealed that microbial communities clustered differently between young and older adults. Several measures of α-diversity, including chao1 (p = 0.001), observed species (p = 0.001), and phylogenetic diversity (p = 0.002) differed between young and older adults. After correction for false discovery rate (FDR), age groups differed (all p values ≤ 0.016) in the relative abundance of the phyla Bacteroidetes, SR1, Spirochaetes, Bacteria_Other, TM7, and Tenericutes. Significant positive correlations (p values ≤ 0.017 after FDR correction) were observed between IGF1 and Bacteroidetes (ρ = 0.380), Spirochaetes (ρ = 0.528), SR1 (ρ = 0.410), and TM7 (ρ = 0.399). Significant inverse correlations were observed for IL6 with Bacteroidetes (ρ = - 0.398) and TM7 (ρ = - 0.423), as well as for TNFα with Bacteroidetes (ρ = - 0.344). Similar findings were observed at the class taxon. These data are the first to demonstrate that the richness and composition of the serum microbiome differ between young and older adults and that these factors are linked to indices of age-related inflammation.


Assuntos
DNA Bacteriano/sangue , Inflamação/etiologia , Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-6/sangue , Microbiota , Fator de Necrose Tumoral alfa/sangue , Adulto , Fatores Etários , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
3.
Sci Rep ; 6: 31023, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27488092

RESUMO

Alterations of pulmonary microbiome have been recognized in multiple respiratory disorders. It is critically important to ascertain if an airway microbiome exists at birth and if so, whether it is associated with subsequent lung disease. We found an established diverse and similar airway microbiome at birth in both preterm and term infants, which was more diverse and different from that of older preterm infants with established chronic lung disease (bronchopulmonary dysplasia). Consistent temporal dysbiotic changes in the airway microbiome were seen from birth to the development of bronchopulmonary dysplasia in extremely preterm infants. Genus Lactobacillus was decreased at birth in infants with chorioamnionitis and in preterm infants who subsequently went on to develop lung disease. Our results, taken together with previous literature indicating a placental and amniotic fluid microbiome, suggest fetal acquisition of an airway microbiome. We speculate that the early airway microbiome may prime the developing pulmonary immune system, and dysbiosis in its development may set the stage for subsequent lung disease.


Assuntos
Líquido Amniótico/microbiologia , Displasia Broncopulmonar/imunologia , Corioamnionite/microbiologia , Disbiose/microbiologia , Recém-Nascido Prematuro/imunologia , Lactobacillus/fisiologia , Pulmão/microbiologia , Microbiota/imunologia , Placenta/microbiologia , Sistema Respiratório/microbiologia , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Parto , Gravidez
4.
J Virol ; 81(9): 4397-404, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17301132

RESUMO

An essential step in the replication of all retroviruses is the capture of a cellular tRNA that is used as the primer for reverse transcription. The 3'-terminal 18 nucleotides of the tRNA are complementary to the primer binding site (PBS). Moloney murine leukemia virus (MuLV) preferentially captures tRNA(Pro). To investigate the specificity of primer selection, the PBS of MuLV was altered to be complementary to different tRNAs. Analysis of the infectivity of the virus and stability of the PBS following in vitro replication revealed that MuLV prefers to select tRNA(Pro), tRNA(Gly), or tRNA(Arg). Previous studies from our laboratory have suggested that tRNA primer capture is coordinated with translation. Coincidentally, a cluster of proline, arginine, and glycine precedes the Gag-Pol junction of MuLV. Human immunodeficiency virus type 1 (HIV-1), which prefers tRNA(3)(Lys) as the primer, can be forced to utilize tRNA(Met), tRNA(1,2)(Lys), tRNA(His), or tRNA(Glu), although these viruses replicate poorly. Codons for methionine, lysine, histidine, or glutamic acid are found prior to the Gag-Pol frameshift site. HIV-1 was mutated so that the 5 lysine codons prior to the Gag-Pol frameshift region were specific for tRNA(1,2)(Lys). HIV-1 forced to use tRNA(1,2)(Lys) as the primer, with the mutation of codons specific for tRNA(1,2)(Lys) prior to the Gag-Pol junction, had enhanced infectivity and replicated similarly to the wild-type virus. The results demonstrate that codon preference prior to the Gag-Pol junction influences primer selection and suggest a coordination of Gag-Pol synthesis and acquisition of the tRNA primer required for retrovirus replication.


Assuntos
Primers do DNA/genética , HIV-1/genética , Vírus da Leucemia Murina de Moloney/genética , Biossíntese de Proteínas/genética , RNA de Transferência/genética , Replicação Viral/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , Linhagem Celular , Códon/genética , Proteínas de Fusão gag-pol/biossíntese , Proteínas de Fusão gag-pol/genética , Humanos , Dados de Sequência Molecular , Mutagênese , Biossíntese de Proteínas/fisiologia , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA