Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 116: 269-285, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38142915

RESUMO

Microglia, the resident immune cells of the central nervous system (CNS), play a major role in damage progression and tissue remodeling after acute CNS injury, including ischemic stroke (IS) and spinal cord injury (SCI). Understanding the molecular mechanisms regulating microglial responses to injury may thus reveal novel therapeutic targets to promote CNS repair. Here, we investigated the role of microglial tumor necrosis factor receptor 2 (TNFR2), a transmembrane receptor previously associated with pro-survival and neuroprotective responses, in shaping the neuroinflammatory environment after CNS injury. By inducing experimental IS and SCI in Cx3cr1CreER:Tnfrsf1bfl/fl mice, selectively lacking TNFR2 in microglia, and corresponding Tnfrsf1bfl/fl littermate controls, we found that ablation of microglial TNFR2 significantly reduces lesion size and pro-inflammatory cytokine levels, and favors infiltration of leukocytes after injury. Interestingly, these effects were paralleled by opposite sex-specific modifications of microglial reactivity, which was found to be limited in female TNFR2-ablated mice compared to controls, whereas it was enhanced in males. In addition, we show that TNFR2 protein levels in the cerebrospinal fluid (CSF) of human subjects affected by IS and SCI, as well as healthy donors, significantly correlate with disease stage and severity, representing a valuable tool to monitor the inflammatory response after acute CNS injury. Hence, these results advance our understanding of the mechanisms regulating microglia reactivity after acute CNS injury, aiding the development of sex- and microglia-specific, personalized neuroregenerative strategies.


Assuntos
Microglia , Traumatismos da Medula Espinal , Animais , Feminino , Humanos , Masculino , Camundongos , Sistema Nervoso Central/metabolismo , Citocinas/metabolismo , Microglia/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Traumatismos da Medula Espinal/metabolismo
2.
Neurobiol Dis ; 191: 106389, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142840

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease which accounts for the most cases of dementia worldwide. Impaired memory, including acquisition, consolidation, and retrieval, is one of the hallmarks in AD. At the cellular level, dysregulated synaptic plasticity partly due to reduced long-term potentiation (LTP) and enhanced long-term depression (LTD) underlies the memory deficits in AD. GluA3 containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are one of key receptors involved in rapid neurotransmission and synaptic plasticity. Recent studies revealed a novel form of GluA3 involved in neuronal plasticity that is dependent on cyclic adenosine monophosphate (cAMP), rather than N-methyl-d-aspartate (NMDA). However, this cAMP-dependent GluA3 pathway is specifically and significantly impaired by amyloid beta (Aß), a pathological marker of AD. cAMP is a key second messenger that plays an important role in modulating memory and synaptic plasticity. We previously reported that exchange protein directly activated by cAMP 2 (Epac2), acting as a main cAMP effector, plays a specific and time-limited role in memory retrieval. From electrophysiological perspective, Epac2 facilities the maintenance of LTP, a cellular event closely associated with memory retrieval. Additionally, Epac2 was found to be involved in the GluA3-mediated plasticity. In this review, we comprehensively summarize current knowledge regarding the specific roles of GluA3 and Epac2 in synaptic plasticity and memory, and their potential association with AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Plasticidade Neuronal/fisiologia , Potenciação de Longa Duração/fisiologia , Transtornos da Memória , Hipocampo/metabolismo
3.
Sci Rep ; 13(1): 10622, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391534

RESUMO

Tumor necrosis factor alpha (TNF-α) and its key role in modulating immune responses has been widely recognized as a therapeutic target for inflammatory and neurodegenerative diseases. Even though inhibition of TNF-α is beneficial for the treatment of certain inflammatory diseases, total neutralization of TNF-α largely failed in the treatment of neurodegenerative diseases. TNF-α exerts distinct functions depending on interaction with its two TNF receptors, whereby TNF receptor 1 (TNFR1) is associated with neuroinflammation and apoptosis and TNF receptor 2 (TNFR2) with neuroprotection and immune regulation. Here, we investigated the effect of administering the TNFR1-specific antagonist Atrosimab, as strategy to block TNFR1 signaling while maintaining TNFR2 signaling unaltered, in an acute mouse model for neurodegeneration. In this model, a NMDA-induced lesion that mimics various hallmarks of neurodegenerative diseases, such as memory loss and cell death, was created in the nucleus basalis magnocellularis and Atrosimab or control protein was administered centrally. We showed that Atrosimab attenuated cognitive impairments and reduced neuroinflammation and neuronal cell death. Our results demonstrate that Atrosimab is effective in ameliorating disease symptoms in an acute neurodegenerative mouse model. Altogether, our study indicates that Atrosimab may be a promising candidate for the development of a therapeutic strategy for the treatment of neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Receptores Tipo II do Fator de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral , Animais , Camundongos , Modelos Animais de Doenças , Transtornos da Memória/tratamento farmacológico , Doenças Neuroinflamatórias , Receptores Tipo I de Fatores de Necrose Tumoral/antagonistas & inibidores , Fator de Necrose Tumoral alfa , Doenças Neurodegenerativas/tratamento farmacológico
4.
J Alzheimers Dis ; 94(3): 977-991, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37355890

RESUMO

BACKGROUND: Tumor necrosis factor-alpha (TNF-α) is a master cytokine involved in a variety of inflammatory and neurological diseases, including Alzheimer's disease (AD). Therapies that block TNF-α proved ineffective as therapeutic for neurodegenerative diseases, which might be explained by the opposing functions of the two receptors of TNF (TNFRs): while TNFR1 stimulation mediates inflammatory and apoptotic pathways, activation of TNFR2 is related to neuroprotection. Despite the success of targeting TNFR2 in a transgenic AD mouse model, research that better mimics the human context is lacking. OBJECTIVE: The aim of this study is to investigate whether stimulation of TNFR2 with a TNFR2 agonist is effective in activating human TNFR2 and attenuating AD neuropathology in the J20xhuTNFR2-k/i mouse model. METHODS: Transgenic amyloid-ß (Aß)-overexpressing mice containing a human extracellular TNFR2 domain (J20xhuTNFR2-k/i) were treated with a TNFR2 agonist (NewStar2). After treatment, different behavioral tests and immunohistochemical analysis were performed to assess different parameters, such as cognitive functions, plaque deposition, synaptic plasticity, or microglial phagocytosis. RESULTS: Treatment with NewStar2 in J20xhuTNFR2-k/i mice resulted in a drastic decrease in plaque load and beta-secretase 1 (BACE-1) compared to controls. Moreover, TNFR2 stimulation increased microglial phagocytic activity, leading to enhanced Aß clearance. Finally, activation of TNFR2 rescued cognitive impairments and improved synaptic plasticity. CONCLUSION: Our findings demonstrate that activation of human TNFR2 ameliorates neuropathology and improves cognitive functions in an AD mouse model. Moreover, our study confirms that the J20xhuTNFR2-k/i mouse model is suitable for testing human TNFR2-specific compounds.


Assuntos
Doença de Alzheimer , Receptores Tipo II do Fator de Necrose Tumoral , Camundongos , Humanos , Animais , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/uso terapêutico , Doença de Alzheimer/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Plasticidade Neuronal
5.
J Neuroinflammation ; 20(1): 106, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138340

RESUMO

TNF signaling is an essential regulator of cellular homeostasis. Through its two receptors TNFR1 and TNFR2, soluble versus membrane-bound TNF enable cell death or survival in a variety of cell types. TNF-TNFRs signaling orchestrates important biological functions such as inflammation, neuronal activity as well as tissue de- and regeneration. TNF-TNFRs signaling is a therapeutic target for neurodegenerative diseases such as multiple sclerosis (MS) and Alzheimer's disease (AD), but animal and clinical studies yielded conflicting findings. Here, we ask whether a sequential modulation of TNFR1 and TNFR2 signaling is beneficial in experimental autoimmune encephalomyelitis (EAE), an experimental mouse model that recapitulates inflammatory and demyelinating aspects of MS. To this end, human TNFR1 antagonist and TNFR2 agonist were administered peripherally at different stages of disease development in TNFR-humanized mice. We found that stimulating TNFR2 before onset of symptoms leads to improved response to anti-TNFR1 therapeutic treatment. This sequential treatment was more effective in decreasing paralysis symptoms and demyelination, when compared to single treatments. Interestingly, the frequency of the different immune cell subsets is unaffected by TNFR modulation. Nevertheless, treatment with only a TNFR1 antagonist increases T-cell infiltration in the central nervous system (CNS) and B-cell cuffing at the perivascular sites, whereas a TNFR2 agonist promotes Treg CNS accumulation. Our findings highlight the complicated nature of TNF signaling which requires a timely balance of selective activation and inhibition of TNFRs in order to exert therapeutic effects in the context of CNS autoimmunity.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Receptores Tipo II do Fator de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral , Animais , Humanos , Camundongos , Sistema Nervoso Central/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Inflamação , Esclerose Múltipla/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/agonistas , Receptores Tipo II do Fator de Necrose Tumoral/agonistas , Fator de Necrose Tumoral alfa/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(37): e2201137119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36037389

RESUMO

Tumor necrosis factor-α (TNF-α) is a pleiotropic, proinflammatory cytokine related to different neurodegenerative diseases, including Alzheimer's disease (AD). Although the linkage between increased TNF-α levels and AD is widely recognized, TNF-α-neutralizing therapies have failed to treat AD. Previous research has associated this with the antithetic functions of the two TNF receptors, TNF receptor 1, associated with inflammation and apoptosis, and TNF receptor 2 (TNFR2), associated with neuroprotection. In our study, we investigated the effects of specifically stimulating TNFR2 with a TNFR2 agonist (NewStar2) in a transgenic Aß-overexpressing mouse model of AD by administering NewStar2 in two different ways: centrally, via implantation of osmotic pumps, or systemically by intraperitoneal injections. We found that both centrally and systemically administered NewStar2 resulted in a drastic reduction in amyloid ß deposition and ß-secretase 1 expression levels. Moreover, activation of TNFR2 increased microglial and astrocytic activation and promoted the uptake and degradation of Aß. Finally, cognitive functions were also improved after NewStar2 treatment. Our results demonstrate that activation of TNFR2 mitigates Aß-induced cognitive deficits and neuropathology in an AD mouse model and indicates that TNFR2 stimulation might be a potential treatment for AD.


Assuntos
Doença de Alzheimer , Cognição , Receptores Tipo II do Fator de Necrose Tumoral , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos Transgênicos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Receptores Tipo II do Fator de Necrose Tumoral/agonistas , Fator de Necrose Tumoral alfa/metabolismo
7.
Neurobiol Aging ; 107: 1-10, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34365256

RESUMO

Neutrophil gelatinase-associated lipocalin (NGAL) is an acute phase protein that has been reported as a potential marker for pre-dementia stages of Alzheimer's disease (AD). Longitudinal studies for its association with the conversion of mild cognitive impairment to AD is still lacking. This study included n = 268 study participants with subjective cognitive decline (SCD) (n=82), mild cognitive impairment (MCI) (n=98) and AD dementia (n=88) at baseline and two-year follow-up clinical assessments. Serum and cerebrospinal fluid (CSF)NGAL, CSF amyloid beta1-42, total-Tau, and phospho-Tau levels were measured with ELISA analysis. CSF NGAL levels were significantly lower in MCI participants compared to people with SCD at baseline. Lower baseline CSF NGAL levels predicted MCI converters to AD dementia vs. non-converters after 2-years follow-up. A positive correlation between CSF NGAL and amyloid beta1-42 was found particularly in MCI participants at baseline. NGAL in CSF holds potential to be used as a predictive marker for the conversion of MCI to AD dementia and may reflect pathophysiological processes of prodromal AD neuropathology.


Assuntos
Doença de Alzheimer/diagnóstico , Disfunção Cognitiva/diagnóstico , Lipocalina-2/sangue , Lipocalina-2/líquido cefalorraquidiano , Assistência ao Convalescente , Idoso , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano
8.
Ageing Res Rev ; 70: 101414, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34325073

RESUMO

Chronic (neuro)inflammation plays an important role in many age-related central nervous system (CNS) diseases, including Alzheimer's disease, Parkinson's disease and vascular dementia. Inflammation also characterizes many conditions that form a risk factor for these CNS disorders, such as physical inactivity, obesity and cardiovascular disease. Lipocalin 2 (Lcn2) is an inflammatory protein shown to be involved in different age-related CNS diseases, as well as risk factor conditions thereof. Lcn2 expression is increased in the periphery and the brain in different age-related CNS diseases and also their risk factor conditions. Experimental studies indicate that Lcn2 contributes to various neuropathophysiological processes of age-related CNS diseases, including exacerbated neuroinflammation, cell death and iron dysregulation, which may negatively impact cognitive function. We hypothesize that increased Lcn2 levels as a result of age-related risk factor conditions may sensitize the brain and increase the risk to develop age-related CNS diseases. In this review we first provide a comprehensive overview of the known functions of Lcn2, and its effects in the CNS. Subsequently, this review explores Lcn2 as a potential (neuro)inflammatory link between different risk factor conditions and the development of age-related CNS disorders. Altogether, evidence convincingly indicates Lcn2 as a key constituent in ageing and age-related brain diseases.


Assuntos
Doença de Alzheimer , Lipocalinas , Proteínas de Fase Aguda/metabolismo , Humanos , Lipocalina-2 , Fatores de Risco
9.
Neurochem Int ; 132: 104607, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31760034

RESUMO

Lipocalin 2 (Lcn2) has been implicated to play a role in various neurodegenerative diseases, and normalizing its overexpression may be of therapeutic potential. Iron chelators were found to reduce Lcn2 levels in certain animal models of CNS injury. Focusing on Alzheimer's disease (AD), we found that the iron chelators deferoxamine and deferiprone inhibited amyloid-ß (Aß)-induced Lcn2 production in cultured primary astrocytes. Accordingly, Aß-exposure increased astrocytic ferritin production, indicating the possibility that Aß induces iron accumulation in astrocytes. This effect was not significantly modulated by Lcn2. Known neuroprotective effects of iron chelators may rely in part on normalization of Lcn2 levels.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Quelantes de Ferro/farmacologia , Lipocalina-2/antagonistas & inibidores , Lipocalina-2/biossíntese , Fragmentos de Peptídeos/toxicidade , Animais , Animais Recém-Nascidos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Camundongos , Camundongos Knockout
10.
Brain Behav Immun ; 81: 247-259, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31220564

RESUMO

Tumor necrosis factor receptor 2 (TNFR2) is a transmembrane receptor that promotes immune modulation and tissue regeneration and is recognized as a potential therapeutic target for multiple sclerosis (MS). However, TNFR2 also contributes to T effector cell function and macrophage-TNFR2 recently was shown to promote disease development in the experimental autoimmune encephalomyelitis (EAE) model of MS. We here demonstrate that systemic administration of a TNFR2 agonist alleviates peripheral and central inflammation, and reduces demyelination and neurodegeneration, indicating that protective signals induced by TNFR2 exceed potential pathogenic TNFR2-dependent responses. Our behavioral data show that systemic treatment of female EAE mice with a TNFR2 agonist is therapeutic on motor symptoms and promotes long-term recovery from neuropathic pain. Mechanistically, our data indicate that TNFR2 agonist treatment follows a dual mode of action and promotes both suppression of CNS autoimmunity and remyelination. Strategies based on the concept of exogenous activation of TNFR2 therefore hold great promise as a new therapeutic approach to treat motor and sensory disease in MS as well as other inflammatory diseases or neuropathic pain conditions.


Assuntos
Esclerose Múltipla/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/agonistas , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Animais , Autoimunidade/imunologia , Doenças Desmielinizantes/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Inflamação/patologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/patologia , Neuralgia/patologia , Doenças Neurodegenerativas/metabolismo , Medula Espinal/patologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fator de Necrose Tumoral alfa/imunologia
11.
Front Neurosci ; 13: 49, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30778285

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia. Accumulating experimental evidence shows the important linkage between tumor necrosis factor-α (TNF) and AD, but the exact role of TNF in AD is still not completely understood. Although TNF-inhibitors are successfully used for treating several diseases, total inhibition of TNF can cause side effects, particularly in neurological diseases. This is attributed to the opposing roles of the two TNF receptors. TNF receptor 1 (TNFR1) predominantly mediates inflammatory and pro-apoptotic signaling pathways, whereas TNF receptor 2 (TNFR2) is neuroprotective and promotes tissue regeneration. Therefore, the specific activation of TNFR2 signaling, either by directly targeting TNFR2 via TNFR2 agonists or by blocking TNFR1 signaling with TNFR1-selective antagonists, seems a promising strategy for AD therapy. This mini-review discusses the involvement of TNFR2 and its signaling pathway in AD and outlines its potential application as therapeutic target. A better understanding of the function of TNFR2 may lead to the development of a treatment for AD.

12.
J Neuroinflammation ; 15(1): 330, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30501637

RESUMO

BACKGROUND: Lipocalin 2 (Lcn2) is an acute-phase protein implicated in multiple neurodegenerative conditions. Interestingly, both neuroprotective and neurodegenerative effects have been described for Lcn2. Increased Lcn2 levels were found in human post-mortem Alzheimer (AD) brain tissue, and in vitro studies indicated that Lcn2 aggravates amyloid-ß-induced toxicity. However, the role of Lcn2 has not been studied in an in vivo AD model. Therefore, in the current study, the effects of Lcn2 were studied in the J20 mouse model of AD. METHODS: J20 mice and Lcn2-deficient J20 (J20xLcn2 KO) mice were compared at the behavioral and neuropathological level. RESULTS: J20xLcn2 KO and J20 mice presented equally strong AD-like behavioral changes, cognitive impairment, plaque load, and glial activation. Interestingly, hippocampal iron accumulation was significantly decreased in J20xLcn2 KO mice as compared to J20 mice. CONCLUSIONS: Lcn2 contributes to AD-like brain iron dysregulation, and future research should further explore the importance of Lcn2 in AD.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Transtornos Cognitivos/etiologia , Regulação da Expressão Gênica/genética , Ferro/metabolismo , Lipocalina-2/metabolismo , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Lipocalina-2/genética , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/etiologia , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Mutação/genética , Neuroglia/patologia , Fosfopiruvato Hidratase/metabolismo , Placa Amiloide/etiologia , Placa Amiloide/metabolismo
13.
Sci Rep ; 8(1): 13628, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206422

RESUMO

Tumour necrosis factor (TNF) signalling is mediated via two receptors, TNF-receptor 1 (TNFR1) and TNF-receptor 2 (TNFR2), which work antithetically to balance CNS immune responses involved in autoimmune diseases such as multiple sclerosis. To determine the therapeutic potential of selectively inhibiting TNFR1 in mice with experimental autoimmune encephalomyelitis, we used chimeric human/mouse TNFR1 knock-in mice allowing the evaluation of antagonistic anti-human TNFR1 antibody efficacy. Treatment of mice after onset of disease with ATROSAB resulted in a robust amelioration of disease severity, correlating with reduced central nervous system immune cell infiltration. Long-term efficacy of treatment was achieved by treatment with the parental mouse anti-human TNFR1 antibody, H398, and extended by subsequent re-treatment of mice following relapse. Our data support the hypothesis that anti-TNFR1 therapy restricts immune cell infiltration across the blood-brain barrier through the down-regulation of TNF-induced adhesion molecules, rather than altering immune cell composition or activity. Collectively, we demonstrate the potential for anti-human TNFR1 therapies to effectively modulate immune responses in autoimmune disease.


Assuntos
Anticorpos Monoclonais Murinos/farmacologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Receptores Tipo I de Fatores de Necrose Tumoral/antagonistas & inibidores , Animais , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo
14.
Front Immunol ; 9: 925, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29760711

RESUMO

Autoimmunity develops when self-tolerance mechanisms are failing to protect healthy tissue. A sustained reaction to self is generated, which includes the generation of effector cells and molecules that destroy tissues. A way to restore this intrinsic tolerance is through immune modulation that aims at refurbishing this immunologically naïve or unresponsive state, thereby decreasing the aberrant immune reaction taking place. One major cytokine has been shown to play a pivotal role in several autoimmune diseases such as rheumatoid arthritis (RA) and multiple sclerosis (MS): tumor necrosis factor alpha (TNFα) modulates the induction and maintenance of an inflammatory process and it comes in two variants, soluble TNF (solTNF) and transmembrane bound TNF (tmTNF). tmTNF signals via TNFR1 and TNFR2, whereas solTNF signals mainly via TNFR1. TNFR1 is widely expressed and promotes mainly inflammation and apoptosis. Conversely, TNFR2 is restricted mainly to immune and endothelial cells and it is known to activate the pro-survival PI3K-Akt/PKB signaling pathway and to sustain regulatory T cells function. Anti-TNFα therapies are successfully used to treat diseases such as RA, colitis, and psoriasis. However, clinical studies with a non-selective inhibitor of TNFα in MS patients had to be halted due to exacerbation of clinical symptoms. One possible explanation for this failure is the non-selectivity of the treatment, which avoids TNFR2 stimulation and its immune and tissue protective properties. Thus, a receptor-selective modulation of TNFα signal pathways provides a novel therapeutic concept that might lead to new insights in MS pathology with major implications for its effective treatment.


Assuntos
Esclerose Múltipla/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Necrose Tumoral/metabolismo , Animais , Autoimunidade/efeitos dos fármacos , Biomarcadores , Humanos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Imunomodulação/efeitos dos fármacos , Terapia de Alvo Molecular , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/etiologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Regeneração/efeitos dos fármacos , Regeneração/imunologia
15.
Eur J Clin Invest ; 47(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29082525

RESUMO

BACKGROUND: Neutrophil gelatinase-associated lipocalin (NGAL) is an inflammatory protein with gaining increasing interest for its use as marker in blood and cerebrospinal fluid (CSF) for several chronic diseases. Its biochemical properties make it an attractive marker. However, changes in blood and CSF NGAL concentrations during the diurnal rhythm in the elderly are unknown. This information is important for its optimal use as marker in studies with older people. METHODS: Serial paired plasma and CSF samples were obtained from 8 healthy elderly males over a 30-hour period. NGAL and cortisol were quantified with ELISA. RESULTS: No significant changes in plasma and CSF NGAL concentrations over time were found, whereas cortisol (included as internal control) concentrations displayed significant changes over time. Significant circadian patterns were found for plasma NGAL and for cortisol in both plasma and CSF. However, CSF NGAL concentrations did not follow a diurnal pattern in elderly males. CONCLUSIONS: This study illustrates the temporal regulation of NGAL in plasma and CSF, which potentially is a useful reference for studies measuring NGAL as biomarker in older individuals.


Assuntos
Lipocalina-2/sangue , Idoso , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Proteína C-Reativa/metabolismo , Ritmo Circadiano , Ensaio de Imunoadsorção Enzimática , Voluntários Saudáveis , Humanos , Hidrocortisona/sangue , Hidrocortisona/líquido cefalorraquidiano , Modelos Lineares , Lipocalina-2/líquido cefalorraquidiano , Masculino , Pessoa de Meia-Idade , Valores de Referência
16.
J Alzheimers Dis ; 55(2): 763-776, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27716662

RESUMO

Co-existing depression worsens Alzheimer's disease (AD) pathology. Neutrophil gelatinase-associated lipocalin (NGAL) is a newly identified (neuro)inflammatory mediator in the pathophysiologies of both AD and depression. This study aimed to compare NGAL levels in healthy controls, AD without depression (AD-D), and AD with co-existing depression (AD+D) patients. Protein levels of NGAL and its receptors, 24p3R and megalin, were assessed in nine brain regions from healthy controls (n = 19), AD-D (n = 19), and AD+D (n = 21) patients. NGAL levels in AD-D patients were significantly increased in brain regions commonly associated with AD. In the hippocampus, NGAL levels were even further increased in AD+D subjects. Unexpectedly, NGAL levels in the prefrontal cortex of AD+D patients were comparable to those in controls. Megalin levels were increased in BA11 and amygdala of AD+D patients, while no changes in 24p3R were detected. These findings indicate significant differences in neuroimmunological regulation between AD patients with and without co-existing depression. Considering its known effects, elevated NGAL levels might actively promote neuropathological processes in AD with and without depression.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/metabolismo , Depressão/patologia , Lipocalina-2/sangue , Lipocalina-2/líquido cefalorraquidiano , Receptores de Superfície Celular/metabolismo , Doença de Alzheimer/complicações , Análise de Variância , Depressão/complicações , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Escalas de Graduação Psiquiátrica
17.
Proc Natl Acad Sci U S A ; 113(43): 12304-12309, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27791020

RESUMO

Despite the recognized role of tumor necrosis factor (TNF) in inflammation and neuronal degeneration, anti-TNF therapeutics failed to treat neurodegenerative diseases. Animal disease models had revealed the antithetic effects of the two TNF receptors (TNFR) in the central nervous system, whereby TNFR1 has been associated with inflammatory degeneration and TNFR2 with neuroprotection. We here show the therapeutic potential of selective inhibition of TNFR1 and activation of TNFR2 by ATROSAB, a TNFR1-selective antagonistic antibody, and EHD2-scTNFR2, an agonistic TNFR2-selective TNF, respectively, in a mouse model of NMDA-induced acute neurodegeneration. Coadministration of either ATROSAB or EHD2-scTNFR2 into the magnocellular nucleus basalis significantly protected cholinergic neurons and their cortical projections against cell death, and reverted the neurodegeneration-associated memory impairment in a passive avoidance paradigm. Simultaneous blocking of TNFR1 and TNFR2 signaling, however, abrogated the therapeutic effect. Our results uncover an essential role of TNFR2 in neuroprotection. Accordingly, the therapeutic activity of ATROSAB is mediated by shifting the balance of the antithetic activity of endogenous TNF toward TNFR2, which appears essential for neuroprotection. Our data also explain earlier results showing that complete blocking of TNF activity by anti-TNF drugs was detrimental rather than protective and argue for the use of next-generation TNFR-selective TNF therapeutics as an effective approach in treating neurodegenerative diseases.


Assuntos
Inflamação/tratamento farmacológico , Degeneração Neural/tratamento farmacológico , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/genética , Animais , Anticorpos/farmacologia , Núcleo Basal de Meynert/metabolismo , Núcleo Basal de Meynert/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Morte Celular/efeitos dos fármacos , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/patologia , Células HEK293 , Humanos , Inflamação/genética , Inflamação/patologia , Camundongos , N-Metilaspartato/genética , Degeneração Neural/induzido quimicamente , Degeneração Neural/genética , Degeneração Neural/imunologia , Receptores Tipo I de Fatores de Necrose Tumoral/antagonistas & inibidores , Receptores Tipo II do Fator de Necrose Tumoral/antagonistas & inibidores , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores
18.
Immunity ; 44(4): 901-12, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27096319

RESUMO

Sickness behavior and cognitive dysfunction occur frequently by unknown mechanisms in virus-infected individuals with malignancies treated with type I interferons (IFNs) and in patients with autoimmune disorders. We found that during sickness behavior, single-stranded RNA viruses, double-stranded RNA ligands, and IFNs shared pathways involving engagement of melanoma differentiation-associated protein 5 (MDA5), retinoic acid-inducible gene 1 (RIG-I), and mitochondrial antiviral signaling protein (MAVS), and subsequently induced IFN responses specifically in brain endothelia and epithelia of mice. Behavioral alterations were specifically dependent on brain endothelial and epithelial IFN receptor chain 1 (IFNAR). Using gene profiling, we identified that the endothelia-derived chemokine ligand CXCL10 mediated behavioral changes through impairment of synaptic plasticity. These results identified brain endothelial and epithelial cells as natural gatekeepers for virus-induced sickness behavior, demonstrated tissue specific IFNAR engagement, and established the CXCL10-CXCR3 axis as target for the treatment of behavioral changes during virus infection and type I IFN therapy.


Assuntos
Encéfalo/citologia , Quimiocina CXCL10/imunologia , Transtornos Cognitivos/genética , Células Endoteliais/imunologia , Células Epiteliais/imunologia , Comportamento de Doença/fisiologia , Receptor de Interferon alfa e beta/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Encéfalo/imunologia , Comunicação Celular/imunologia , Células Cultivadas , Transtornos Cognitivos/psicologia , Proteína DEAD-box 58 , RNA Helicases DEAD-box/metabolismo , Endotélio/citologia , Endotélio/imunologia , Epitélio/imunologia , Interferon Tipo I/uso terapêutico , Helicase IFIH1 Induzida por Interferon , Masculino , Camundongos , RNA de Cadeia Dupla/genética , Receptor de Interferon alfa e beta/imunologia , Receptores CXCR3/imunologia , Transdução de Sinais/imunologia , Viroses/imunologia
19.
Brain Behav Immun ; 57: 144-150, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27013355

RESUMO

BACKGROUND: In patients with heart failure (HF) depressive symptoms have been associated with mortality, as well as biological risk factors, including inflammation, nitric oxide (NO) regulation, and oxidative stress. We investigated the joint predictive value of depressive symptoms, inflammation and NO regulation on all-cause mortality in patients with HF, adjusted for covariates. METHODS: Serum levels of inflammation (TNFα, sTNFr1, sTNFr2, IL-6, hsCRP, NGAL), NO regulation (l-arginine, ADMA, and SDMA), and oxidative stress (isoprostane 8-Epi Prostaglandin F2 Alpha) were measured in 104 patients with HF (mean age 65.7±SD 8.4years, 28% women). Depressive symptoms (Beck Depression Inventory, BDI) were measured as continuous total, cognitive, and somatic symptoms, as well as categorized presence of mild/moderate depression (cut-off BDI ⩾10). In Cox proportional hazard models we adjusted for age, sex, poor exercise tolerance and comorbidity. RESULTS: After on average 6.1years follow-up (SD=2.9, range 0.4-9.2), 49 patients died. Total and somatic depressive symptoms, mild/moderate depression, higher NGAL, sTNFr2, IL-6, hsCRP and SDMA serum levels were significantly associated with a higher all-cause mortality rate, adjusted for covariates. The findings were most consistent for CRP level and somatic depressive symptoms. When combined, both depressive symptoms and markers of inflammation and NO regulation remained significantly associated with all-cause mortality. These associations were not confounded by age, sex, poor exercise tolerance and comorbidity. CONCLUSION: Depressive symptoms and markers of inflammation and NO regulation are codominant risk factors for all-cause mortality in heart failure.


Assuntos
Proteína C-Reativa/metabolismo , Depressão/sangue , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/mortalidade , Inflamação/sangue , Óxido Nítrico/metabolismo , Estresse Oxidativo/fisiologia , Idoso , Biomarcadores/sangue , Comorbidade , Depressão/epidemiologia , Depressão/fisiopatologia , Feminino , Seguimentos , Humanos , Inflamação/epidemiologia , Lipocalina-2/sangue , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Prognóstico , Fatores de Risco
20.
World J Biol Psychiatry ; 16(7): 536-41, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26212793

RESUMO

OBJECTIVES: Neutrophil gelatinase-associated lipocalin (NGAL) is an inflammatory marker associated with the pathophysiology of heart failure (HF), the psychopathology of depression and the co-existing symptoms of depression in HF patients. The aim of this study is to determine whether the association of serum NGAL levels with depressive symptoms dimensions in HF is independent of well-known inflammatory markers. METHODS: Serum NGAL, high sensitive C-reactive protein (hsCRP), tumour necrosis factor-α (TNF-α), its two soluble receptors; sTNFR1, sTNFR2, Interleukin-6 (IL-6) and leukocytes were measured in 104 patients with HF at baseline and 12 months. Depressive symptoms were evaluated using the Beck Depression Inventory (BDI) at both timepoints. Correlations between NGAL and inflammatory markers and depressive symptoms dimensions were determined. The effect of hsCRP, IL-6, TNF-α, sTNFR1, sTNFR2 and leukocytes on the association of NGAL with depressive symptoms was determined and adjusted for time, demographics, cardiac disease severity, and kidney function. RESULTS: NGAL levels were significantly correlated with hsCRP, TNF-α, sTNFR1, sTNFR2 and leukocytes. NGAL was significantly associated with somatic depressive symptoms, independent of abovementioned markers. CONCLUSIONS: Serum NGAL is an independent inflammatory marker for somatic depressive symptoms in HF and may function as an immunopathogen linking somatic symptoms of depression to HF.


Assuntos
Biomarcadores/sangue , Depressão/sangue , Insuficiência Cardíaca/complicações , Inflamação/sangue , Lipocalinas/sangue , Proteínas Proto-Oncogênicas/sangue , Proteínas de Fase Aguda , Idoso , Proteína C-Reativa/análise , Feminino , Humanos , Interleucina-6/sangue , Lipocalina-2 , Masculino , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA