Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9377, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654067

RESUMO

Poor treatment responses of pancreatic ductal adenocarcinoma (PDAC) are in large part due to tumor heterogeneity and an immunosuppressive desmoplastic tumor stroma that impacts interactions with cells in the tumor microenvironment (TME). Thus, there is a pressing need for models to probe the contributions of cellular and noncellular crosstalk. Organoids are promising model systems with the potential to generate a plethora of data including phenotypic, transcriptomic and genomic characterization but still require improvements in culture conditions mimicking the TME. Here, we describe an INTERaction with Organoid-in-MatriX ("InterOMaX") model system, that presents a 3D co-culture-based platform for investigating matrix-dependent cellular crosstalk. We describe its potential to uncover new molecular mechanisms of T cell responses to murine KPC (LSL-KrasG12D/+27/Trp53tm1Tyj/J/p48Cre/+) PDAC cells as well as PDAC patient-derived organoids (PDOs). For this, a customizable matrix and homogenously sized organoid-in-matrix positioning of cancer cells were designed based on a standardized agarose microwell chip array system and established for co-culture with T cells and inclusion of stromal cells. We describe the detection and orthogonal analysis of murine and human PDAC cell populations with distinct sensitivity to T cell killing that is corroborated in vivo. By enabling both identification and validation of gene candidates for T cell resistance, this platform sets the stage for better mechanistic understanding of cancer cell-intrinsic resistance phenotypes in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Organoides , Neoplasias Pancreáticas , Linfócitos T , Microambiente Tumoral , Organoides/patologia , Organoides/metabolismo , Animais , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/imunologia , Camundongos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Humanos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Técnicas de Cocultura/métodos , Linhagem Celular Tumoral
2.
Cancers (Basel) ; 16(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38339318

RESUMO

Discovered in the late eighties, sEVs are small extracellular nanovesicles (30-150 nm diameter) that gained increasing attention due to their profound roles in cancer, immunology, and therapeutic approaches. They were initially described as cellular waste bins; however, in recent years, sEVs have become known as important mediators of intercellular communication. They are secreted from cells in substantial amounts and exert their influence on recipient cells by signaling through cell surface receptors or transferring cargos, such as proteins, RNAs, miRNAs, or lipids. A key role of sEVs in cancer is immune modulation, as well as pro-invasive signaling and formation of pre-metastatic niches. sEVs are ideal biomarker platforms, and can be engineered as drug carriers or anti-cancer vaccines. Thus, sEVs further provide novel avenues for cancer diagnosis and treatment. This review will focus on the role of sEVs in GI-oncology and delineate their functions in cancer progression, diagnosis, and therapeutic use.

3.
Cell Mol Life Sci ; 80(10): 299, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740130

RESUMO

We have recently shown that loss of ORP3 leads to aneuploidy induction and promotes tumor formation. However, the specific mechanisms by which ORP3 contributes to ploidy-control and cancer initiation and progression is still unknown. Here, we report that ORP3 is highly expressed in ureter and bladder epithelium while its expression is downregulated in invasive bladder cancer cell lines and during tumor progression, both in human and in mouse bladder cancer. Moreover, we observed an increase in the incidence of N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-induced invasive bladder carcinoma in the tissue-specific Orp3 knockout mice. Experimental data demonstrate that ORP3 protein interacts with γ-tubulin at the centrosomes and with components of actin cytoskeleton. Altering the expression of ORP3 induces aneuploidy and genomic instability in telomerase-immortalized urothelial cells with a stable karyotype and influences the migration and invasive capacity of bladder cancer cell lines. These findings demonstrate a crucial role of ORP3 in ploidy-control and indicate that ORP3 is a bona fide tumor suppressor protein. Of note, the presented data indicate that ORP3 affects both cell invasion and migration as well as genome stability through interactions with cytoskeletal components, providing a molecular link between aneuploidy and cell invasion and migration, two crucial characteristics of metastatic cells.


Assuntos
Actinas , Neoplasias da Bexiga Urinária , Animais , Humanos , Camundongos , Aneuploidia , Instabilidade Genômica , Microtúbulos , Invasividade Neoplásica , Bexiga Urinária , Neoplasias da Bexiga Urinária/genética
4.
Front Bioeng Biotechnol ; 11: 1107055, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761296

RESUMO

Mesenchymal stromal cells (MSCs) are promising therapeutic candidates in a variety of diseases due to having immunomodulatory and pro-regenerative properties. In recent years, MSC-derived small extracellular vesicles (sEVs) have attracted increasing interest as a possible alternative to conventional cell therapy. However, translational processes of sEVs for clinical applications are still impeded by inconsistencies regarding isolation procedures and culture conditions. We systematically compared different methods for sEV isolation from conditioned media of ex vivo expanded bone marrow-derived MSCs and demonstrated considerable variability of quantity, purity, and characteristics of sEV preparations obtained by these methods. The combination of cross flow filtration with ultracentrifugation for sEV isolation resulted in sEVs with similar properties as compared to isolation by differential centrifugation combined with ultracentrifugation, the latter is still considered as gold standard for sEV isolation. In contrast, sEV isolation by a combination of precipitation with polyethylene glycol and ultracentrifugation as well as cross flow filtration and size exclusion chromatography resulted in sEVs with different characteristics, as shown by surface antigen expression patterns. The MSC culture requires a growth-promoting supplement, such as platelet lysate, which contains sEVs itself. We demonstrated that MSC culture with EV-depleted platelet lysate does not alter MSC characteristics, and conditioned media of such MSC cultures provide sEV preparations enriched for MSC-derived sEVs. The results from the systematic stepwise evaluation of various aspects were combined with culture of MSCs in a hollow fiber bioreactor. This resulted in a strategy using cross flow filtration with subsequent ultracentrifugation for sEV isolation. In conclusion, this workflow provides a semi-automated, efficient, large-scale-applicable, and good manufacturing practice (GMP)-grade approach for the generation of sEVs for clinical use. The use of EV-depleted platelet lysate is an option to further increase the purity of MSC-derived sEVs.

5.
Cancers (Basel) ; 14(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35205822

RESUMO

Pancreatic ductal adenocarcinomas (PDACs) are tumors with poor prognosis and limited treatment options. Personalized medicine aims at characterizing actionable DNA variants by next-generation sequencing, thereby improving treatment strategies and outcomes. Fine-needle tumor biopsies are currently the gold standard to acquire samples for DNA profiling. However, liquid biopsies have considerable advantages as they are minimally invasive and frequently obtainable and thus may help to monitor tumor evolution over time. However, which liquid analyte works best for this purpose is currently unclear. Our study aims to directly compare tumor-, circulating free (cf-) and extracellular vesicle-derived (ev)DNA by panel sequencing of matching patient material. We evaluated copy number variations (CNVs), single nucleotide variants (SNVs) and insertions and deletions (indels). Our data show that evDNA contains significantly larger DNA fragments up to 5.5 kb, in line with previous observations. Stringent bioinformatic processing revealed a significant advantage of evDNA with respect to cfDNA concerning detection performance for SNVs and a numerical increase for indels. A combination of ev- and cfDNA was clearly superior for SNV detection, as compared to either single analyte, thus potentially improving actionable variant prediction upon further optimization. Finally, calling of CNVs from liquid biopsies still remained challenging and uninformative.

6.
Cancers (Basel) ; 13(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638330

RESUMO

Even with all recent advances in cancer therapy, pancreatic cancer still has a dismal 5-year survival rate of less than 7%. The most prevalent tumor subtype is pancreatic ductal adenocarcinoma (PDAC). PDACs display an extensive crosstalk with their tumor microenvironment (TME), e.g., pancreatic stellate cells, but also immune cells to regulate tumor growth, immune evasion, and metastasis. In addition to crosstalk in the local TME, PDACs were shown to induce the formation of pre-metastatic niches in different organs. Recent advances have attributed many of these interactions to intercellular communication by small extracellular vesicles (sEVs, exosomes). These nanovesicles are derived of endo-lysosomal structures (multivesicular bodies) with a size range of 30-150 nm. sEVs carry various bioactive cargos, such as proteins, lipids, DNA, mRNA, or miRNAs and act in an autocrine or paracrine fashion to educate recipient cells. In addition to tumor formation, progression, and metastasis, sEVs were described as potent biomarker platforms for diagnosis and prognosis of PDAC. Advances in sEV engineering have further indicated that sEVs might once be used as effective drug carriers. Thus, extensive sEV-based communication and applications as platform for biomarker analysis or vehicles for treatment suggest a major impact of sEVs in future PDAC research.

7.
Cancers (Basel) ; 13(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34503190

RESUMO

Cancer is a complex disease, driven by genetic defects and environmental cues. Systemic dissemination of cancer cells by metastasis is generally associated with poor prognosis and is responsible for more than 90% of cancer deaths. Metastasis is thought to follow a sequence of events, starting with loss of epithelial features, detachment of tumor cells, basement membrane breakdown, migration, intravasation and survival in the circulation. At suitable distant niches, tumor cells reattach, extravasate and establish themselves by proliferating and attracting vascularization to fuel metastatic growth. These processes are facilitated by extensive cross-communication of tumor cells with cells in the primary tumor microenvironment (TME) as well as at distant pre-metastatic niches. A vital part of this communication network are small extracellular vesicles (sEVs, exosomes) with a size of 30-150 nm. Tumor-derived sEVs educate recipient cells with bioactive cargos, such as proteins, and in particular, major nucleic acid classes, to drive tumor growth, cell motility, angiogenesis, immune evasion and formation of pre-metastatic niches. Circulating sEVs are also utilized as biomarker platforms for diagnosis and prognosis. This review discusses how tumor cells facilitate progression through the metastatic cascade by employing sEV-based communication and evaluates their role as biomarkers and vehicles for drug delivery.

8.
Gastroenterology ; 159(3): 1019-1035.e22, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32446697

RESUMO

BACKGROUND & AIMS: Pancreatic tumor cells release small extracellular vesicles (sEVs, exosomes) that contain lipids and proteins, RNA, and DNA molecules that might promote formation of metastases. It is not clear what cargo these vesicles contain and how they are released. Protein kinase D1 (PRKD1) inhibits cell motility and is believed to be dysregulated in pancreatic ductal adenocarcinomas. We investigated whether it regulates production of sEVs in pancreatic cancer cells and their ability to form premetastatic niches for pancreatic cancer cells in mice. METHODS: We analyzed data from UALCAN and human pancreatic tissue microarrays to compare levels of PRKD1 between tumor and nontumor tissues. We studied mice with pancreas-specific disruption of Prkd1 (PRKD1KO mice), mice that express oncogenic KRAS (KC mice), and KC mice with disruption of Prkd1 (PRKD1KO-KC mice). Subcutaneous xenograft tumors were grown in NSG mice from Panc1 cells; some mice were then given injections of sEVs. Pancreata and lung tissues from mice were analyzed by histology, immunohistochemistry, and/or quantitative polymerase chain reaction; we performed nanoparticle tracking analysis of plasma sEVs. The Prkd1 gene was disrupted in Panc1 cells using CRISPR-Cas9 or knocked down with small hairpin RNAs, or PRKD1 activity was inhibited with the selective inhibitor CRT0066101. Pancreatic cancer cell lines were analyzed by gene-expression microarray, quantitative polymerase chain reaction, immunoblot, and immunofluorescence analyses. sEVs secreted by Panc1 cell lines were analyzed by flow cytometry, transmission electron microscopy, and mass spectrometry. RESULTS: Levels of PRKD1 were reduced in human pancreatic ductal adenocarcinoma tissues compared with nontumor tissues. PRKD1KO-KC mice developed more pancreatic intraepithelial neoplasia, at a faster rate, than KC mice, and had more lung metastases and significantly shorter average survival time. Serum from PRKD1KO-KC mice had increased levels of sEVs compared with KC mice. Pancreatic cancer cells with loss or inhibition of PRKD1 increased secretion of sEVs; loss of PRKD1 reduced phosphorylation of its substrate, cortactin, resulting in increased F-actin levels at the plasma membrane. sEVs from cells with loss or reduced expression of PRKD1 had altered content, and injection of these sEVs into mice increased metastasis of xenograft tumors to lung, compared with sEVs from pancreatic cells that expressed PRKD1. PRKD1-deficient pancreatic cancer cells showed increased loading of integrin α6ß4 into sEVs-a process that required CD82. CONCLUSIONS: Human pancreatic ductal adenocarcinoma has reduced levels of PRKD1 compared with nontumor pancreatic tissues. Loss of PRKD1 results in reduced phosphorylation of cortactin in pancreatic cancer cell lines, resulting in increased in F-actin at the plasma membrane and increased release of sEVs, with altered content. These sEVs promote metastasis of xenograft and pancreatic tumors to lung in mice.


Assuntos
Carcinoma Ductal Pancreático/secundário , Vesículas Extracelulares/metabolismo , Neoplasias Pulmonares/secundário , Neoplasias Pancreáticas/patologia , Proteína Quinase C/deficiência , Animais , Carcinogênese/patologia , Carcinoma Ductal Pancreático/sangue , Linhagem Celular Tumoral , Movimento Celular , Conjuntos de Dados como Assunto , Regulação para Baixo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/patologia , Neoplasias Pulmonares/sangue , Camundongos , Camundongos Knockout , Invasividade Neoplásica/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Pâncreas/patologia , Neoplasias Pancreáticas/sangue , Fosforilação , Cultura Primária de Células , Proteína Quinase C/genética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Cell Sci ; 132(24)2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31727638

RESUMO

Constitutive secretion from the trans-Golgi-network (TGN) is facilitated by a concerted regulation of vesicle biogenesis and fission processes. The protein kinase D family (PKD) has been previously described to enhance vesicle fission by modifying the lipid environment. PKD also phosphorylates the actin regulatory protein cortactin at S298 to impair synergistic actin polymerization. We here report additional functions for PKD2 (also known as PRKD2) and cortactin in the regulation of actin polymerization during the fission of transport carriers from the TGN. Phosphorylation of cortactin at S298 impairs the interaction between WIP (also known as WIPF1) and cortactin. WIP stabilizes the autoinhibited conformation of N-WASP (also known as WASL). This leads to an inhibition of synergistic Arp2/3-complex-dependent actin polymerization at the TGN. PKD2 activity at the TGN is controlled by active CDC42-GTP which directly activates N-WASP, inhibits PKD2 and shifts the balance to non-S298-phosphorylated cortactin, which can in turn sequester WIP from N-WASP. Consequently, synergistic actin polymerization at the TGN and constitutive secretion are enhanced.


Assuntos
Cortactina/metabolismo , Canais de Cátion TRPP/metabolismo , Actinas , Animais , Western Blotting , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação , Células MCF-7 , Camundongos , Células NIH 3T3 , Polimerização , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Proteína cdc42 de Ligação ao GTP/metabolismo , Rede trans-Golgi/genética
10.
J Clin Invest ; 128(11): 5056-5072, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30320600

RESUMO

Dysregulated intestinal epithelial apoptosis initiates gut injury, alters the intestinal barrier, and can facilitate bacterial translocation leading to a systemic inflammatory response syndrome (SIRS) and/or multi-organ dysfunction syndrome (MODS). A variety of gastrointestinal disorders, including inflammatory bowel disease, have been linked to intestinal apoptosis. Similarly, intestinal hyperpermeability and gut failure occur in critically ill patients, putting the gut at the center of SIRS pathology. Regulation of apoptosis and immune-modulatory functions have been ascribed to Thirty-eight-negative kinase 1 (TNK1), whose activity is regulated merely by expression. We investigated the effect of TNK1 on intestinal integrity and its role in MODS. TNK1 expression induced crypt-specific apoptosis, leading to bacterial translocation, subsequent septic shock, and early death. Mechanistically, TNK1 expression in vivo resulted in STAT3 phosphorylation, nuclear translocation of p65, and release of IL-6 and TNF-α. A TNF-α neutralizing antibody partially blocked development of intestinal damage. Conversely, gut-specific deletion of TNK1 protected the intestinal mucosa from experimental colitis and prevented cytokine release in the gut. Finally, TNK1 was found to be deregulated in the gut in murine and porcine trauma models and human inflammatory bowel disease. Thus, TNK1 might be a target during MODS to prevent damage in several organs, notably the gut.


Assuntos
Proteínas Fetais/metabolismo , Doenças Inflamatórias Intestinais/enzimologia , Intestinos/enzimologia , Insuficiência de Múltiplos Órgãos/enzimologia , Traumatismo Múltiplo/enzimologia , Proteínas Tirosina Quinases/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/enzimologia , Animais , Modelos Animais de Doenças , Feminino , Proteínas Fetais/genética , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Interleucina-6/genética , Interleucina-6/metabolismo , Intestinos/patologia , Camundongos , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/genética , Insuficiência de Múltiplos Órgãos/patologia , Traumatismo Múltiplo/complicações , Traumatismo Múltiplo/genética , Traumatismo Múltiplo/patologia , Proteínas Tirosina Quinases/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Suínos , Síndrome de Resposta Inflamatória Sistêmica/etiologia , Síndrome de Resposta Inflamatória Sistêmica/patologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
11.
J Cell Sci ; 130(19): 3374-3387, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28808088

RESUMO

We here report a novel function of the armadillo protein p0071 (also known as PKP4) during transport mediated by the KIF3 transport complex. Secretion of chromogranin A and matrix metallopeptidase 9 from pancreatic neuroendocrine tumor cells or pancreatic cancer cells, respectively, was substantially reduced following knockdown of p0071. Vesicle tracking indicated that there was impaired directional persistence of vesicle movement upon p0071 depletion. This suggests a disturbed balance between plus- and minus-end directed microtubule transport in cells lacking p0071. p0071 directly interacts with the KIF3 motor subunit KIF3B. Our data indicate that p0071 also interacts with the kinesin cargo adaptor protein KAP3 (also known as KIFAP3) acting as a stabilizing linker between KIF3B and its KAP3 cargo-binding entity. Thus, p0071 is required for directional vesicle movement and secretion of different KIF3-transported carriers, thereby regulating the transport of intracellular membrane vesicles along microtubules.


Assuntos
Cinesinas/metabolismo , Placofilinas/metabolismo , Vesículas Secretórias/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Células HEK293 , Células HeLa , Humanos , Cinesinas/genética , Placofilinas/genética , Transporte Proteico/fisiologia , Vesículas Secretórias/genética
12.
Gut ; 66(3): 473-486, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27633923

RESUMO

OBJECTIVE: The generation of acinar and ductal cells from human pluripotent stem cells (PSCs) is a poorly studied process, although various diseases arise from this compartment. DESIGN: We designed a straightforward approach to direct human PSCs towards pancreatic organoids resembling acinar and ductal progeny. RESULTS: Extensive phenotyping of the organoids not only shows the appropriate marker profile but also ultrastructural, global gene expression and functional hallmarks of the human pancreas in the dish. Upon orthotopic transplantation into immunodeficient mice, these organoids form normal pancreatic ducts and acinar tissue resembling fetal human pancreas without evidence of tumour formation or transformation. Finally, we implemented this unique phenotyping tool as a model to study the pancreatic facets of cystic fibrosis (CF). For the first time, we provide evidence that in vitro, but also in our xenograft transplantation assay, pancreatic commitment occurs generally unhindered in CF. Importantly, cystic fibrosis transmembrane conductance regulator (CFTR) activation in mutated pancreatic organoids not only mirrors the CF phenotype in functional assays but also at a global expression level. We also conducted a scalable proof-of-concept screen in CF pancreatic organoids using a set of CFTR correctors and activators, and established an mRNA-mediated gene therapy approach in CF organoids. CONCLUSIONS: Taken together, our platform provides novel opportunities to model pancreatic disease and development, screen for disease-rescuing agents and to test therapeutic procedures.


Assuntos
Fibrose Cística/terapia , Modelos Animais de Doenças , Organoides/crescimento & desenvolvimento , Organoides/transplante , Pâncreas/citologia , RNA Mensageiro/uso terapêutico , Células Acinares/citologia , Animais , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Perfilação da Expressão Gênica , Terapia Genética , Humanos , Camundongos , Organoides/citologia , Organoides/metabolismo , Pâncreas/crescimento & desenvolvimento , Pâncreas/metabolismo , Ductos Pancreáticos/citologia , Fenótipo , Células-Tronco Pluripotentes
13.
Stem Cell Res ; 17(2): 367-378, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27632063

RESUMO

Cell fate decisions and pluripotency, but also malignancy depend on networks of key transcriptional regulators. The T-box transcription factor TBX3 has been implicated in the regulation of embryonic stem cell self-renewal and cardiogenesis. We have recently discovered that forced TBX3 expression in embryonic stem cells promotes mesendoderm specification directly by activating key lineage specification factors and indirectly by enhancing paracrine NODAL signalling. Interestingly, aberrant TBX3 expression is associated with breast cancer and melanoma formation. In other cancers, loss of TBX3 expression is associated with a more aggressive phenotype e.g. in gastric and cervical cancer. The precise function of TBX3 in pancreatic ductal adenocarcinoma remains to be determined. In the current study we provide conclusive evidence for TBX3 overexpression in pancreatic cancer samples as compared to healthy tissue. While proliferation remains unaltered, forced TBX3 expression strongly increases migration and invasion, but also angiogenesis in vitro and in vivo. Finally, we describe the TBX3-dependency of cancer stem cells that perpetuate themselves through an autocrine TBX3-ACTIVIN/NODAL signalling loop to sustain stemness. Thus, TBX3 is a new key player among pluripotency-related genes driving cancer formation.


Assuntos
Ativinas/metabolismo , Células-Tronco Neoplásicas/citologia , Proteína Nodal/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas com Domínio T/metabolismo , Antígeno AC133/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose , Movimento Celular , Proliferação de Células , Feminino , Humanos , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Neovascularização Patológica , Neoplasias Pancreáticas/metabolismo , Fenótipo , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Proteínas com Domínio T/genética
14.
J Biol Chem ; 291(1): 462-77, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26507660

RESUMO

Vesicle formation and fission are tightly regulated at the trans-Golgi network (TGN) during constitutive secretion. Two major protein families regulate these processes: members of the adenosyl-ribosylation factor family of small G-proteins (ARFs) and the protein kinase D (PKD) family of serine/threonine kinases. The functional relationship between these two key regulators of protein transport from the TGN so far is elusive. We here demonstrate the assembly of a novel functional protein complex at the TGN and its key members: cytosolic PKD2 binds ARF-like GTPase (ARL1) and shuttles ARL1 to the TGN. ARL1, in turn, localizes Arfaptin2 to the TGN. At the TGN, where PKD2 interacts with active ARF1, PKD2, and ARL1 are required for the assembly of a complex comprising of ARF1 and Arfaptin2 leading to secretion of matrix metalloproteinase-2 and -7. In conclusion, our data indicate that PKD2 is a core factor in the formation of this multiprotein complex at the TGN that controls constitutive secretion of matrix metalloproteinase cargo.


Assuntos
Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 7 da Matriz/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Quinases/metabolismo , Rede trans-Golgi/metabolismo , Fator 1 de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular , Guanosina Trifosfato/metabolismo , Humanos , Isoenzimas , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Ligação Proteica , Proteína Quinase D2 , Transporte Proteico
15.
Sci Rep ; 5: 11742, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26148697

RESUMO

The protein kinase D isoenzymes PKD1/2/3 are prominent downstream targets of PKCs (Protein Kinase Cs) and phospholipase D in various biological systems. Recently, we identified PKD isoforms as novel mediators of tumour cell-endothelial cell communication, tumour cell motility and metastasis. Although PKD isoforms have been implicated in physiological/tumour angiogenesis, a role of PKDs during embryonic development, vasculogenesis and angiogenesis still remains elusive. We investigated the role of PKDs in germ layer segregation and subsequent vasculogenesis and angiogenesis using mouse embryonic stem cells (ESCs). We show that mouse ESCs predominantly express PKD2 followed by PKD3 while PKD1 displays negligible levels. Furthermore, we demonstrate that PKD2 is specifically phosphorylated/activated at the time of germ layer segregation. Time-restricted PKD2-activation limits mesendoderm formation and subsequent cardiovasculogenesis during early differentiation while leading to branching angiogenesis during late differentiation. In line, PKD2 loss-of-function analyses showed induction of mesendodermal differentiation in expense of the neuroectodermal germ layer. Our in vivo findings demonstrate that embryoid bodies transplanted on chicken chorioallantoic membrane induced an angiogenic response indicating that timed overexpression of PKD2 from day 4 onwards leads to augmented angiogenesis in differentiating ESCs. Taken together, our results describe novel and time-dependent facets of PKD2 during early cell fate determination.


Assuntos
Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Quinases/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Galinhas , Membrana Corioalantoide/irrigação sanguínea , Doxiciclina/farmacologia , Corpos Embrioides/citologia , Corpos Embrioides/transplante , Técnicas de Introdução de Genes , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas/citologia , Neovascularização Patológica , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteína Quinase D2 , Proteínas Quinases/genética , Reação em Cadeia da Polimerase em Tempo Real
16.
Cytoskeleton (Hoboken) ; 72(2): 101-12, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25620625

RESUMO

Micro-environmental clues are critical to cell behavior. One of the key elements of migration is the generation and response to forces. Up to now there is no definitive concept on how the generation and responses to cellular forces influence cell behavior. Here, we show that phosphorylation of paxillin is a crucial event in the response to exogenous forces. Application of force induced growth of adhesion sites and this phenomenon was accompanied by a downregulation of Src family kinase activity, which in turn led to a decrease in the phosphorylation of paxillin at the tyrosine residues Y31 and Y118. The force-dependent growth of adhesion sites is mediated by a decrease in the turnover-rate of paxillin in focal contacts. This turnover critically depended on the phosphorylation state of paxillin at Y31/118. Paxillin is an important regulator in the control of the aggregate state of the whole adhesion site since the turnover of other adhesion site proteins such as vinculin is influenced by the phosphorylation state of paxillin as well. Taken together these data suggest that SFK dependent phosphorylation of paxillin is a crucial event in the regulation of adhesion site function in response to force.


Assuntos
Adesões Focais/metabolismo , Paxilina/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Fosforilação , Vinculina/metabolismo , Quinases da Família src/metabolismo
17.
Bioarchitecture ; 4(3): 111-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24847910

RESUMO

Highly invasive pancreatic tumors are often recognized in late stages due to a lack of clear symptoms and pose major challenges for treatment and disease management. Broad-band Protein Kinase D (PKD) inhibitors have recently been proposed as additional treatment option for this disease. PKDs are implicated in the control of cancer cell motility, angiogenesis, proliferation and metastasis. In particular, PKD2 expression is elevated in pancreatic cancer, whereas PKD1 expression is comparably lower. In our recent study we report that both kinases control PDAC cell invasive properties in an isoform-specific, but opposing manner. PKD1 selectively mediates anti-migratory/anti-invasive features by preferential regulation of the actin-regulatory Cofilin-phosphatase Slingshot1L (SSH1L). PKD2, on the other hand enhances invasion and angiogenesis of PDAC cells in 3D-ECM cultures and chorioallantois tumor models by stimulating expression and secretion of matrix-metalloproteinase 7 and 9 (MMP7/9). MMP9 also enhances PKD2-mediated tumor angiogenesis releasing extracellular matrix-bound VEGF-A. We thus suggest high PKD2 expression and loss of PKD1 may be beneficial for tumor cells to enhance their matrix-invading abilities. In our recent study we demonstrate for the first time PKD1 and 2 isoform-selective effects on pancreatic cancer cell invasion, in-vitro and in-vivo, defining isoform-specific regulation of PKDs as a major future issue.


Assuntos
Carcinoma Ductal Pancreático/patologia , Invasividade Neoplásica/genética , Neoplasias Pancreáticas/patologia , Proteína Quinase C/genética , Proteínas Quinases/genética , Humanos
18.
Mol Biol Cell ; 25(3): 324-36, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24336522

RESUMO

Pancreatic cancer cell invasion, metastasis, and angiogenesis are major challenges for the development of novel therapeutic strategies. Protein kinase D (PKD) isoforms are involved in controlling tumor cell motility, angiogenesis, and metastasis. In particular PKD2 expression is up-regulated in pancreatic cancer, whereas PKD1 expression is lowered. We report that both kinases control pancreatic cancer cell invasive properties in an isoform-specific manner. PKD2 enhances invasion in three-dimensional extracellular matrix (3D-ECM) cultures by stimulating expression and secretion of matrix metalloproteinases 7 and 9 (MMP7/9), by which MMP7 is likely to act upstream of MMP9. Knockdown of MMP7/9 blocks PKD2-mediated invasion in 3D-ECM assays and in vivo using tumors growing on chorioallantois membranes. Furthermore, MMP9 enhances PKD2-mediated tumor angiogenesis by releasing extracellular matrix-bound vascular endothelial growth factor A, increasing its bioavailability and angiogenesis. Of interest, specific knockdown of PKD1 in PKD2-expressing pancreatic cancer cells further enhanced the invasive properties in 3D-ECM systems by generating a high-motility phenotype. Loss of PKD1 thus may be beneficial for tumor cells to enhance their matrix-invading abilities. In conclusion, we define for the first time PKD1 and 2 isoform-selective effects on pancreatic cancer cell invasion and angiogenesis, in vitro and in vivo, addressing PKD isoform specificity as a major factor for future therapeutic strategies.


Assuntos
Carcinoma Ductal Pancreático/patologia , Invasividade Neoplásica/genética , Neoplasias Pancreáticas/patologia , Proteína Quinase C/genética , Proteínas Quinases/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Membrana Corioalantoide/citologia , Matriz Extracelular , Células HEK293 , Células HeLa , Humanos , Metaloproteinase 7 da Matriz/biossíntese , Metaloproteinase 7 da Matriz/genética , Metaloproteinase 7 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metástase Neoplásica/genética , Neovascularização Patológica/genética , Proteína Quinase D2 , Interferência de RNA , RNA Interferente Pequeno , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
J Biol Chem ; 288(1): 455-65, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23148218

RESUMO

Neuregulin (NRG; heregulin) is overexpressed in ∼30% of breast cancers and mediates various processes involved in tumor progression, including tumor cell migration and invasion. Here, we show that NRG mediates its effects on tumor cell migration via PKD1. Downstream of RhoA, PKD1 can prevent directed cell migration through phosphorylation of its substrate SSH1L. NRG exerts its inhibitory effects on PKD1 through Rac1/NADPH oxidase, leading to decreased PKD1 activation loop phosphorylation and decreased activity toward SSH1L. The consequence of PKD1 inhibition by NRG is decreased binding of 14-3-3 to SSH1L, localization of SSH1L to F-actin at the leading edge, and increased cofilin activity, resulting in increased reorganization of the actin cytoskeleton and cell motility. Our data provide a mechanism through which the Rho GTPase Rac1 cross-talks with PKD1 signaling pathways to facilitate directed cell migration.


Assuntos
Actinas/metabolismo , Neuregulina-1/metabolismo , Proteína Quinase C/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Neoplasias da Mama/metabolismo , Movimento Celular , Quimiotaxia , Progressão da Doença , Feminino , Humanos , Camundongos , Microscopia de Fluorescência/métodos , Invasividade Neoplásica , Metástase Neoplásica , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Cicatrização
20.
J Biol Chem ; 287(39): 32367-80, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22791710

RESUMO

We here identify protein kinase D1 (PKD1) as a major regulator of anchorage-dependent and -independent growth of cancer cells controlled via the transcription factor Snail1. Using FRET, we demonstrate that PKD1, but not PKD2, efficiently interacts with Snail1 in nuclei. PKD1 phosphorylates Snail1 at Ser-11. There was no change in the nucleocytoplasmic distribution of Snail1 using wild type Snail1 and Ser-11 phosphosite mutants in different tumor cells. Regardless of its phosphorylation status or following co-expression of constitutively active PKD, Snail1 was predominantly localized to cell nuclei. We also identify a novel mechanism of PKD1-mediated regulation of Snail1 transcriptional activity in tumor cells. The interaction of the co-repressors histone deacetylases 1 and 2 as well as lysyl oxidase-like protein 3 with Snail1 was impaired when Snail1 was not phosphorylated at Ser-11, which led to reduced Snail1-associated histone deacetylase activity. Additionally, lysyl oxidase-like protein 3 expression was up-regulated by ectopic PKD1 expression, implying a synergistic regulation of Snail1-driven transcription. Ectopic expression of PKD1 also up-regulated proliferation markers such as Cyclin D1 and Ajuba. Accordingly, Snail1 and its phosphorylation at Ser-11 were required and sufficient to control PKD1-mediated anchorage-independent growth and anchorage-dependent proliferation of different tumor cells. In conclusion, our data show that PKD1 is crucial to support growth of tumor cells via Snail1.


Assuntos
Núcleo Celular/metabolismo , Proliferação de Células , Neoplasias/metabolismo , Proteína Quinase C/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transporte Ativo do Núcleo Celular/genética , Aminoácido Oxirredutases , Núcleo Celular/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Células HEK293 , Células HeLa , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Humanos , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Neoplasias/genética , Proteína Quinase C/genética , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA