Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(34): e2306868120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579180

RESUMO

Inositol pyrophosphates (PP-InsPs) are energetic signaling molecules with important functions in mammals. As their biosynthesis depends on ATP concentration, PP-InsPs are tightly connected to cellular energy homeostasis. Consequently, an increasing number of studies involve PP-InsPs in metabolic disorders, such as type 2 diabetes, aspects of tumorigenesis, and hyperphosphatemia. Research conducted in yeast suggests that the PP-InsP pathway is activated in response to reactive oxygen species (ROS). However, the precise modulation of PP-InsPs during cellular ROS signaling is unknown. Here, we report how mammalian PP-InsP levels are changing during exposure to exogenous (H2O2) and endogenous ROS. Using capillary electrophoresis electrospray ionization mass spectrometry (CE-ESI-MS), we found that PP-InsP levels decrease upon exposure to oxidative stressors in HCT116 cells. Application of quinone drugs, particularly ß-lapachone (ß-lap), under normoxic and hypoxic conditions enabled us to produce ROS in cellulo and to show that ß-lap treatment caused PP-InsP changes that are oxygen-dependent. Experiments in MDA-MB-231 breast cancer cells deficient of NAD(P)H:quinone oxidoreductase-1 (NQO1) demonstrated that ß-lap requires NQO1 bioactivation to regulate the cellular metabolism of PP-InsPs. Critically, significant reductions in cellular ATP concentrations were not directly mirrored in reduced PP-InsP levels as shown in NQO1-deficient MDA-MB-231 cells treated with ß-lap. The data presented here unveil unique aspects of ß-lap pharmacology and its impact on PP-InsP levels. The identification of different quinone drugs as modulators of PP-InsP synthesis will allow the overall impact on cellular function of such drugs to be better appreciated.


Assuntos
Diabetes Mellitus Tipo 2 , Naftoquinonas , Humanos , Trifosfato de Adenosina , Linhagem Celular Tumoral , Difosfatos , Peróxido de Hidrogênio/metabolismo , Inositol , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Naftoquinonas/farmacologia , Oxigênio , Espécies Reativas de Oxigênio/metabolismo
2.
Nat Commun ; 12(1): 5368, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508082

RESUMO

Condensed phosphates may exist as linear, cyclic or branched structures. Due to their important role in nature, linear polyphosphates have been well studied. In contrast, branched phosphates (ultraphosphates) remain largely uncharacterised, because they were already described in 1950 as exceedingly unstable in the presence of water, epitomized in the antibranching-rule. This rule lacks experimental backup, since, to the best of our knowledge, no rational synthesis of defined ultraphosphates is known. Consequently, detailed studies of their chemical properties, reactivity and potential biological relevance remain elusive. Here, we introduce a general synthesis of monodisperse ultraphosphates. Hydrolysis half-lives up to days call the antibranching-rule into question. We provide evidence for the interaction of an enzyme with ultraphosphates and discover a rearrangement linearizing the branched structure. Moreover, ultraphosphate can phosphorylate nucleophiles such as amino acids and nucleosides with implications for prebiotic chemistry. Our results provide an entry point into the uncharted territory of branched condensed phosphates.

3.
Proc Natl Acad Sci U S A ; 116(26): 12952-12957, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31189594

RESUMO

T cell-independent (TI) B cell response is critical for the early protection against pathogen invasion. The regulation and activation of Bruton's tyrosine kinase (Btk) is known as a pivotal step of B cell antigen receptor (BCR) signaling in TI humoral immunity, as observed in patients with X-linked agammaglobulinemia (XLA) experiencing a high incidence of encapsulated bacterial infections. However, key questions remain as to whether a well-established canonical BCR signaling pathway is sufficient to regulate the activity of Btk. Here, we find that inositol hexakisphosphate (InsP6) acts as a physiological regulator of Btk in BCR signaling. Absence of higher order inositol phosphates (InsPs), inositol polyphosphates, leads to an inability to mount immune response against TI antigens. Interestingly, the significance of InsP6-mediated Btk regulation is more prominent in IgM+ plasma cells. Hence, the present study identifies higher order InsPs as principal components of B cell activation upon TI antigen stimulation and presents a mechanism for InsP-mediated regulation of the BCR signaling.


Assuntos
Tirosina Quinase da Agamaglobulinemia/metabolismo , Agamaglobulinemia/imunologia , Doenças Genéticas Ligadas ao Cromossomo X/imunologia , Imunidade Humoral , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ácido Fítico/imunologia , Tirosina Quinase da Agamaglobulinemia/imunologia , Agamaglobulinemia/genética , Agamaglobulinemia/patologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Modelos Animais de Doenças , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Camundongos , Camundongos Transgênicos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Ácido Fítico/metabolismo , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA