Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1850(6): 1274-85, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25735211

RESUMO

BACKGROUND: Thioredoxin (Trx) family proteins are crucial mediators of cell functions via regulation of the thiol redox state of various key proteins and the levels of the intracellular second messenger hydrogen peroxide. Their expression, localization and functions are altered in various pathologies. Here, we have analyzed the impact of Trx family proteins in neuronal development and recovery, following hypoxia/ischemia and reperfusion. METHODS: We have analyzed the regulation and potential functions of Trx family proteins during hypoxia/ischemia and reoxygenation of the developing brain in both an animal and a cellular model of perinatal asphyxia. We have analyzed the distribution of 14 Trx family and related proteins in the cerebellum, striatum, and hippocampus, three areas of the rat brain that are especially susceptible to hypoxia. Using SH-SY5Y cells subjected to hypoxia and reoxygenation, we have analyzed the functions of some redoxins suggested by the animal experiment. RESULTS AND CONCLUSIONS: We have described/discovered a complex, cell-type and tissue-specific expression pattern following the hypoxia/ischemia and reoxygenation. Particularly, Grx2 and Trx1 showed distinct changes during tissue recovery following hypoxia/ischemia and reoxygenation. Silencing of these proteins in SH-SY5Y cells subjected to hypoxia-reoxygenation confirmed that these proteins are required to maintain the normal neuronal phenotype. GENERAL SIGNIFICANCE: These findings demonstrate the significance of redox signaling in cellular pathways. Grx2 and Trx1 contribute significantly to neuronal integrity and could be clinically relevant in neuronal damage following perinatal asphyxia and other neuronal disorders.


Assuntos
Asfixia Neonatal/enzimologia , Encéfalo/enzimologia , Glutarredoxinas/metabolismo , Hipóxia-Isquemia Encefálica/enzimologia , Neurônios/enzimologia , Tiorredoxinas/metabolismo , Animais , Asfixia Neonatal/patologia , Encéfalo/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glutarredoxinas/genética , Humanos , Hipóxia-Isquemia Encefálica/patologia , Masculino , Neurônios/patologia , Oxirredução , Oxigênio/metabolismo , Fenótipo , Interferência de RNA , Ratos Sprague-Dawley , Transdução de Sinais , Tiorredoxinas/genética , Fatores de Tempo , Transfecção
2.
Biochem Biophys Res Commun ; 394(2): 372-6, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20226171

RESUMO

Mammalian glutaredoxin 3 (Grx3/PICOT) is an essential protein involved in the regulation of signal transduction, for instance during immune cell activation and development of cardiac hypertrophy, presumably in response to redox signals. This function requires the sensing of such stresses by a hitherto unknown mechanism. Here, we characterized Grx3/PICOT as iron-sulfur protein. The protein binds two bridging [2Fe-2S] clusters in a homodimeric complex with the active site cysteinyl residues of its two monothiol glutaredoxin domains and glutathione bound non-covalently to the Grx domains. Co-immunoprecipitation of 55-iron with Grx3/PICOT from Jurkat cells suggested the presence of these cofactors under physiological conditions. The [2Fe-2S]2+ clusters were not redox active, instead they were lost upon treatment of the holo protein with ferricyanide or S-nitroso glutathione. This redox-induced dissociation of the Grx3/PICOT holo complex may be a mechanism of Grx3/PICOT activation in response to reactive oxygen and nitrogen species.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Proteínas de Transporte/química , Ferricianetos/metabolismo , Humanos , Imunoprecipitação , Radioisótopos de Ferro/metabolismo , Proteínas Ferro-Enxofre/química , Células Jurkat , Oxirredução , Conformação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , S-Nitrosoglutationa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA