Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 36(1): e22080, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34882832

RESUMO

Angiogenesis is required in embryonic development and tissue repair in the adult. Vascular endothelial growth factor (VEGF) initiates angiogenesis, and VEGF or its receptor is targeted therapeutically to block pathological angiogenesis. Additional pro-angiogenic cues, such as CXCL12 acting via the CXCR4 receptor, co-operate with VEGF/VEGFR2 to cue vascular patterning. We studied the role of FGD5, an endothelial Rho GTP/GDP exchange factor (RhoGEF), to regulate CXCR4-dependent signals in the endothelial cell (EC). Patient-derived renal cell carcinomas produce a complex milieu of growth factors that stimulated sprouting angiogenesis and endothelial tip cell differentiation ex vivo that was blocked by EC FGD5 loss. In a simplified model, CXCL12 augmented sprouting and tip gene expression under conditions where VEGF was limiting. CXCL12-stimulated tip cell differentiation was dependent on PI3 kinase (PI3K)-ß activity. Knockdown of EC FGD5 abolished CXCR4 signaling to PI3K-ß and Akt. Further, inhibition of Rac1, a Rho GTPase required for PI3K-ß activity, recapitulated the signaling defects of FGD5 deficiency, suggesting that FGD5 may regulate PI3K-ß activity through Rac1. Overexpression of a RhoGEF deficient, Dbl domain-deleted FGD5 mutant reduced CXCL12-stimulated Akt phosphorylation and failed to rescue PI3K signaling in native FGD5-deficient EC, indicating that FGD5 RhoGEF activity is required for FDG5 function. Endothelial expression of mutant PI3K-ß with an inactivated Rho binding domain confirmed that CXCL12-stimulated PI3K activity in EC requires Rac1-GTP co-regulation. Together, this data identify the role of FGD5 to generate Rac1-GTP to regulate pro-angiogenic CXCR4-dependent PI3K-ß signaling in EC. Inhibition of FGD5 activity may complement current angiogenesis inhibitor drugs.


Assuntos
Carcinoma de Células Renais , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neoplasias Renais , Proteínas de Neoplasias/metabolismo , Neovascularização Patológica , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Carcinoma de Células Renais/irrigação sanguínea , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Neoplasias Renais/irrigação sanguínea , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Proteínas de Neoplasias/genética , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Fosfatidilinositol 3-Quinases/genética
2.
Front Immunol ; 13: 1069499, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618374

RESUMO

Airway epithelial cells can respond to incoming pathogens, allergens and stimulants through the secretion of cytokines and chemokines. These pro-inflammatory mediators activate inflammatory signaling cascades that allow a robust immune response to be mounted. However, uncontrolled production and release of cytokines and chemokines can result in chronic inflammation and appears to be an underlying mechanism for the pathogenesis of pulmonary disorders such as asthma and COPD. The Rho GTPase, Cdc42, is an important signaling molecule that we hypothesize can regulate cytokine production and release from epithelial cells. We treated BEAS-2B lung epithelial cells with a set of stimulants to activate inflammatory pathways and cytokine release. The production, trafficking and secretion of cytokines were assessed when Cdc42 was pharmacologically inhibited with ML141 drug or silenced with lentiviral-mediated shRNA knockdown. We found that Cdc42 inhibition with ML141 differentially affected gene expression of a subset of cytokines; transcription of IL-6 and IL-8 were increased while MCP-1 was decreased. However, Cdc42 inhibition or depletion disrupted IL-8 trafficking and reduced its secretion even though transcription was increased. Cytokines transiting through the Golgi were particularly affected by Cdc42 disruption. Our results define a role for Cdc42 in the regulation of cytokine production and release in airway epithelial cells. This underscores the role of Cdc42 in coupling receptor activation to downstream gene expression and also as a regulator of cytokine secretory pathways.


Assuntos
Citocinas , Interleucina-8 , Interleucina-8/metabolismo , Brônquios , Células Epiteliais/metabolismo , Quimiocinas/metabolismo
3.
Acta Biomater ; 136: 159-169, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34530142

RESUMO

Peptide based therapeutics are desirable owing to their high biological specificity. However, a number of these fail in clinical testing due to an adverse inflammatory response. Mast cells play a key role in directing the host response to drugs and related products. Although the role of FcεRI receptor is well known, Mas-related G-protein coupled receptor X2 (MRGPRX2) binding of endogenous peptides, and drugs will activate mast cells independent of FcεRI. Identifying peptides that activate mast cells through MRGPRX2, and their respective activation potency, can be used to reduce the failure rate of peptide therapeutics at clinical trial. Moreover, it will allow for peptide design where mast cell activation is actually desired. It was found that FRKKW and WNKWAL are two motifs that activate human LAD2 cells similar to PAMP-12 controls. Peptide activators of MRGPRX2 could be reduced to Xa-(Y)(n ≥ 3)-Xb where: Xa is an aromatic residue; Xb is a hydrophobic residue; and Y is a minimum 3 residue long sequence, containing a minimum of one positively charged residue with the remainder being uncharged residues. Artificial peptides WKKKW and FKKKF were constructed to test this structural functionality and were similar to PAMP-12 controls. Peptides with different activation potentials were found where FRKKW = WKKKW = FKKKF > PAMP-12 = WNKWAL > YKKKY > FRKKANKWALSR = FRKKWNKAALSR > KWKWK > FRKK = WNKWA > KYKYK > NKWALSR = YKKY = WNK. These sequences should be considered when designing peptide-based therapeutics. STATEMENT OF SIGNIFICANCE: Mast cells release immune regulating molecules upon activation that direct host's immune response. MRGPRX2 receptor provides an alternate pathway for mast cell activation that is independent of FcεRI receptor. It is thought that mast cell activation through MRGPRX2 plays a critical role in high failure rates of drugs in clinical trials. Identifying peptide sequences that activate mast cells through MRGPRX2 can serve two important purposes, namely, sequences to avoid when designing peptide therapeutics, and artificial peptides with different activation potentials for mast cells. Herein, we have identified a general amino acid sequence that induces mast cell activation through MRGPRX2. Furthermore, by modulating the identified sequence, artificial peptides have been designed which activate mast cells by varying degrees for therapeutic applications.


Assuntos
Mastócitos , Receptores Acoplados a Proteínas G , Sequência de Aminoácidos , Humanos , Proteínas do Tecido Nervoso , Peptídeos/farmacologia , Receptores de Neuropeptídeos
4.
Small GTPases ; 12(2): 147-160, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-31601145

RESUMO

Rho proteins are signalling molecules that control cellular dynamics, movement and morphological changes. They are activated by Rho guanine-nucleotide exchange factors (Rho GEFs) that transduce upstream signals into Rho-mediated activation of downstream processes. Fgd5 is a Rho GEF involved in angiogenesis and its target Rho protein for this process has been linked to Cdc42 activation. Here, we examined the function of purified Fgd5, specifically, which Rho proteins it activates and pinpoint the structural domains required for enzymatic activity. Using a GEF enzyme assay, we found that purified Fgd5 showed preferential activation of Rac1 and direct binding of Rac1 in pull-down and co-immunoprecipitation assays. Structural comparisons showed that the Fgd5 DH domain is highly similar to the Rac1 GEF, TrioN, supporting a role for Fgd5 as a Rac1 GEF. Compounds that bind to purified Fgd5 DH-PH protein were identified by screening a small molecule library via surface plasmon resonance. The effects of eleven ligands were further examined for their ability to inhibit the Fgd5 GEF enzymatic activity and Rac1 interaction. From these studies, we found that the compound aurintricarboxylic acid, and to a lesser extent mitoxantrone dihydrochloride, inhibited both Fgd5 GEF activation of Rac1 and their interaction. Aurintricarboxylic acid had no effect on the activity or binding of the Rac1 GEF, TrioN, thus demonstrating the feasibility of selectively disrupting Rho GEF activators. Abbreviations: a.a.: amino acid; ATA: aurintricarboxylic acid; DH: Dbl homology; DOCK: dictator of cytokinesis; Fgd: faciogenital dysplasia; GEF: guanine-nucleotide exchange factor; GST: glutathione S-transferase; LOPAC: library of pharmacologically active compounds; PH: pleckstrin homology; PDB: protein data bank; s.e.m.: standard error of the mean; SPR: surface plasmon resonance.


Assuntos
Ácido Aurintricarboxílico
5.
Oncogene ; 39(41): 6480-6492, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32879446

RESUMO

Angiogenesis inhibitors, such as the receptor tyrosine kinase (RTK) inhibitor sunitinib, target vascular endothelial growth factor (VEGF) signaling in cancers. However, only a fraction of patients respond, and most ultimately develop resistance to current angiogenesis inhibitor therapies. Activity of alternative pro-angiogenic growth factors, acting via RTK or G-protein coupled receptors (GPCR), may mediate VEGF inhibitor resistance. The phosphoinositide 3-kinase (PI3K)ß isoform is uniquely coupled to both RTK and GPCRs. We investigated the role of endothelial cell (EC) PI3Kß in tumor angiogenesis. Pro-angiogenic GPCR ligands were expressed by patient-derived renal cell carcinomas (PD-RCC), and selective inactivation of PI3Kß reduced PD-RCC-stimulated EC spheroid sprouting. EC-specific PI3Kß knockout (ΕC-ßKO) in mice potentiated the sunitinib-induced reduction in subcutaneous growth of LLC1 and B16F10, and lung metastasis of B16F10 tumors. Compared to single-agent sunitinib treatment, tumors in sunitinib-treated ΕC-ßKO mice showed a marked decrease in microvessel density, and reduced new vessel formation. The fraction of perfused mature tumor microvessels was increased in ΕC-ßKO mice suggesting immature microvessels were most sensitive to combined sunitinib and PI3Kß inactivation. Taken together, EC PI3Kß inactivation with sunitinib inhibition reduces microvessel turnover and decreases heterogeneity of the tumor microenvironment, hence PI3Kß inhibition may be a useful adjuvant antiangiogenesis therapy with sunitinib.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma de Células Renais/patologia , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Renais/patologia , Neovascularização Patológica/patologia , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/antagonistas & inibidores , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Células Renais/irrigação sanguínea , Carcinoma de Células Renais/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/genética , Endotélio Vascular/citologia , Endotélio Vascular/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Renais/irrigação sanguínea , Neoplasias Renais/tratamento farmacológico , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Camundongos Knockout , Microvasos/efeitos dos fármacos , Microvasos/patologia , Morfolinas/farmacologia , Morfolinas/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinonas/farmacologia , Pirimidinonas/uso terapêutico , Sunitinibe/farmacologia , Sunitinibe/uso terapêutico , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
6.
Biochem Cell Biol ; 97(3): 257-264, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30308128

RESUMO

FYVE domains are highly conserved protein modules that typically bind phosphatidylinositol 3-phosphate (PI3P) on the surface of early endosomes. Along with pleckstrin homology (PH) and phox homology (PX) domains, FYVE domains are the principal readers of the phosphoinositide (PI) code that mediate specific recognition of eukaryotic organelles. Of all the human FYVE domain containing proteins, those within the faciogenital dysplasia (Fgd) subfamily are particularly divergent and couple with GTPases to exert unique cellular functions. The subcellular distributions and functions of these evolutionarily conserved signal transducers, which also include Dbl homology (DH) and two PH domains, are discussed here to better understand the biological range of processes that such multidomain proteins engage in. Determinants of their various functions include specific multidomain architectures, posttranslational modifications including PIP stops that have been discovered in sorting nexins, PI recognition motifs, and phospholipid-binding surfaces as defined by the Membrane Optimal Docking Area (MODA) program. How these orchestrate Fgd function remains unclear but has implications for developmental diseases including Aarskog-Scott syndrome, which is also known as faciogenital dysplasia, and forms of cancer that are associated with mutations and amplifications of Fgd genes.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Conformação Proteica
7.
J Leukoc Biol ; 95(5): 763-774, 2014 05.
Artigo em Inglês | MEDLINE | ID: mdl-24399839

RESUMO

The release of preformed mediators from immune cells is through a process described as exocytosis. In mast cells, exocytosis is regulated by several coordinated intracellular signaling pathways. Here, we investigated the role of the hematopoietic-specific Rho GTPase, Rac2, and the ubiquitously expressed Rac1, in controlling mast cell exocytosis. These two isoforms showed equivalent levels of expression in mouse BMMCs. Although Rac1 and Rac2 share 92% sequence identity, they were not functionally redundant, as Rac2-/- BMMCs were defective in exocytosis, even though Rac1 levels were unaffected. Antigen-stimulated WT mast cells underwent a series of morphological transitions: initial flattening, followed by actin-mediated peripheral membrane ruffling and calcium influx, which preceded exocytosis. Whereas membrane ruffling was unaffected in Rac2-/- BMMCs, calcium influx was decreased significantly. Calcium influx was studied further by examining SOCE. In Rac2-/- BMMCs, the activation of PLCγ1 and calcium release from intracellular stores occurred normally; however, activation of plasma membrane calcium channels was defective, shown by the lack of extracellular calcium influx and a reduction of YFP-STIM1 puncta at the plasma membrane. Additionally, we used the small molecule Rac inhibitor, EHT 1864, to target Rac signaling acutely in WT BMMCs. EHT 1864 blocked exocytosis and membrane ruffling completely in conjunction with exocytosis. Our findings suggest that antigen-stimulated membrane ruffling in mast cells is a Rac1-mediated process, as this persisted in the absence of Rac2. Therefore, we define distinct modes of Rac-regulated mast cell exocytosis: Rac2-mediated calcium influx and Rac1-mediated membrane ruffling.


Assuntos
Antígenos/imunologia , Sinalização do Cálcio/imunologia , Exocitose/imunologia , Mastócitos/imunologia , Neuropeptídeos/imunologia , Proteínas rac de Ligação ao GTP/imunologia , Proteínas rac1 de Ligação ao GTP/imunologia , Animais , Antígenos/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Membrana Celular/genética , Membrana Celular/imunologia , Exocitose/efeitos dos fármacos , Exocitose/genética , Camundongos , Camundongos Knockout , Neuropeptídeos/antagonistas & inibidores , Neuropeptídeos/genética , Pironas/farmacologia , Quinolinas/farmacologia , Proteínas rac de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/genética , Proteína RAC2 de Ligação ao GTP
8.
Front Biosci ; 13: 5559-70, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18508605

RESUMO

Neutrophils are granulocytes derived from bone marrow that circulate through the blood and become recruited to tissues during infection or inflammation. They are the most abundant white blood cell and comprise the first line of defence in the innate immune system. However, they are also capable of causing tissue damage in a wide range of diseases. Release of chemotactic signals from inflamed or infected tissues trigger neutrophil migration from the bloodstream to inflammatory foci, where they contribute to inflammation by undergoing receptor-mediated respiratory burst and degranulation. Degranulation from neutrophils has been implicated as a major causative factor in numerous inflammatory diseases. However, the mechanisms that control neutrophil degranulation are not well understood. Recent observations indicate that receptor-mediated granule release from neutrophils depends on activation of distal signaling pathways that include the src family of tyrosine kinases, beta-arrestins, the tyrosine phosphatase MEG2, the kinase MARCK, Rabs and SNAREs, and the Rho GTPase, Rac2. Some of these pathways are specifically required for membrane fusion between the granule and plasma membrane, leading to exocytosis. This review focuses on the understanding of distal molecular mechanisms controlling exocytosis from neutrophils.


Assuntos
Grânulos Citoplasmáticos/fisiologia , Exocitose/fisiologia , Neutrófilos/fisiologia , Neuropatias Amiloides Familiares/genética , Membrana Celular/fisiologia , Humanos , Mutação , Pré-Albumina/genética , Proteoma
9.
J Biol Chem ; 282(42): 30466-75, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17726018

RESUMO

We have previously shown that actin ligands inhibit the fusion of yeast vacuoles in vitro, which suggests that actin remodeling is a subreaction of membrane fusion. Here, we demonstrate the presence of vacuole-associated actin polymerization activity, and its dependence on Cdc42p and Vrp1p. Using a sensitive in vitro pyrene-actin polymerization assay, we found that vacuole membranes stimulated polymerization, and this activity increased when vacuoles were preincubated under conditions that support membrane fusion. Vacuoles purified from a VRP1-gene deletion strain showed reduced polymerization activity, which could be recovered when reconstituted with excess Vrp1p. Cdc42p regulates this activity because overexpression of dominant-negative Cdc42p significantly reduced vacuole-associated polymerization activity, while dominant-active Cdc42p increased activity. We also used size-exclusion chromatography to directly examine changes in yeast actin induced by vacuole fusion. This assay confirmed that actin undergoes polymerization in a process requiring ATP. To further confirm the need for actin polymerization during vacuole fusion, an actin polymerization-deficient mutant strain was examined. This strain showed in vivo defects in vacuole fusion, and actin purified from this strain inhibited in vitro vacuole fusion. Affinity isolation of vacuole-associated actin and in vitro binding assays revealed a polymerization-dependent interaction between actin and the SNARE Ykt6p. Our results suggest that actin polymerization is a subreaction of vacuole membrane fusion governed by Cdc42p signal transduction.


Assuntos
Actinas/metabolismo , Estruturas da Membrana Celular/metabolismo , Fusão de Membrana/fisiologia , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Vacúolos/metabolismo , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo , Actinas/química , Actinas/genética , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Estruturas da Membrana Celular/química , Estruturas da Membrana Celular/genética , Corantes Fluorescentes/farmacologia , Deleção de Genes , Fusão de Membrana/efeitos dos fármacos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Pirenos/farmacologia , Proteínas R-SNARE/química , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/efeitos dos fármacos , Vacúolos/química , Vacúolos/genética , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/química , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/genética
10.
J Cell Biol ; 158(4): 669-79, 2002 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-12177043

RESUMO

Actin participates in several intracellular trafficking pathways. We now find that actin, bound to the surface of purified yeast vacuoles in the absence of cytosol or cytoskeleton, regulates the last compartment mixing stage of homotypic vacuole fusion. The Cdc42p GTPase is known to be required for vacuole fusion. We now show that proteins of the Cdc42p-regulated actin remodeling cascade (Cdc42p --> Cla4p --> Las17p/Vrp1p --> Arp2/3 complex --> actin) are enriched on isolated vacuoles. Vacuole fusion is dramatically altered by perturbation of the vacuole-bound actin, either by mutation of the ACT1 gene, addition of specific actin ligands such as latrunculin B or jasplakinolide, antibody to the actin regulatory proteins Las17p (yeast Wiskott-Aldrich syndrome protein) or Arp2/3, or deletion of actin regulatory genes. On docked vacuoles, actin is enriched at the "vertex ring" membrane microdomain where fusion occurs and is required for the terminal steps leading to membrane fusion. This role for actin may extend to other trafficking systems.


Assuntos
Actinas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte , Proteínas do Citoesqueleto , Depsipeptídeos , Fusão de Membrana/fisiologia , Proteínas de Saccharomyces cerevisiae , Vacúolos/fisiologia , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo , Actinas/genética , Anticorpos/imunologia , Anticorpos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteínas Fúngicas/imunologia , Ligantes , Fusão de Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Mutação , Peptídeos Cíclicos/farmacologia , Ligação Proteica , Tiazóis/farmacologia , Tiazolidinas , Transativadores/genética , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral , Proteína da Síndrome de Wiskott-Aldrich , Leveduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA