Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(9)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37763816

RESUMO

There is rapidly emerging evidence from pre-clinical studies, patient samples and patient subpopulations that certain chemotherapeutics inadvertently produce prometastatic effects. Prior to this, we showed that doxorubicin and daunorubicin stiffen cells before causing cell death, predisposing the cells to clogging and extravasation, the latter being a step in metastasis. Here, we investigate which other anti-cancer drugs might have similar prometastatic effects by altering the biophysical properties of cells. We treated myelogenous (K562) leukemic cancer cells with the drugs nocodazole and hydroxyurea and then measured their mechanical properties using a microfluidic microcirculation mimetic (MMM) device, which mimics aspects of blood circulation and enables the measurement of cell mechanical properties via transit times through the device. We also quantified the morphological properties of cells to explore biophysical mechanisms underlying the MMM results. Results from MMM measurements show that nocodazole- and hydroxyurea-treated K562 cells exhibit significantly altered transit times. Nocodazole caused a significant (p < 0.01) increase in transit times, implying a stiffening of cells. This work shows the feasibility of using an MMM to explore possible biophysical mechanisms that might contribute to chemotherapy-induced metastasis. Our work also suggests cell mechanics as a therapeutic target for much needed antimetastatic strategies in general.

2.
Life (Basel) ; 13(8)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37629540

RESUMO

Unlike plants that have special gravity-sensing cells, such special cells in animals are yet to be discovered. However, microgravity, the condition of apparent weightlessness, causes bone, muscular and immune system dysfunctions in astronauts following spaceflights. Decades of investigations show correlations between these organ and system-level dysfunctions with changes induced at the cellular level both by simulated microgravity as well as microgravity conditions in outer space. Changes in single bone, muscle and immune cells include morphological abnormalities, altered gene expression, protein expression, metabolic pathways and signaling pathways. These suggest that human cells mount some response to microgravity. However, the implications of such adjustments on many cellular functions and responses are not clear. Here, we addressed the question whether microgravity induces alterations to drug response in cancer cells. We used both adherent cancer cells (T98G) and cancer cells in suspension (K562) to confirm the known effects of simulated microgravity and then treated the K562 cells with common cancer drugs (hydroxyurea and paclitaxel) following 48 h of exposure to simulated microgravity via a NASA-developed rotary cell culture system. Through fluorescence-guided morphometry, we found that microgravity abolished a significant reduction (p < 0.01) in the nuclear-to-cytoplasm ratio of cancer cells treated with hydroxyurea. Our results call for more studies on the impact of microgravity on cellular drug response, in light of the growing need for space medicine, as space exploration grows.

3.
Biomedicines ; 10(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35892697

RESUMO

Glioblastoma (GBM) is the most common primary brain tumor. Due to high resistance to treatment, local invasion, and a high risk of recurrence, GBM patient prognoses are often dismal, with median survival around 15 months. The current standard of care is threefold: surgery, radiation therapy, and chemotherapy with temozolomide (TMZ). However, patient survival has only marginally improved. Radioimmunotherapy (RIT) is a fourth modality under clinical trials and aims at combining immunotherapeutic agents with radiotherapy. Here, we develop in vitro assays for the rapid evaluation of RIT strategies. Using a standard cell irradiator and an Electric Cell Impedance Sensor, we quantify cell migration following the combination of radiotherapy and chemotherapy with TMZ and RIT with durvalumab, a PD-L1 immune checkpoint inhibitor. We measure cell survival using a cloud-based clonogenic assay. Irradiated T98G and U87 GBM cells migrate significantly (p < 0.05) more than untreated cells in the first 20−40 h post-treatment. Addition of TMZ increases migration rates for T98G at 20 Gy (p < 0.01). Neither TMZ nor durvalumab significantly change cell survival in 21 days post-treatment. Interestingly, durvalumab abolishes the enhanced migration effect, indicating possible potency against local invasion. These results provide parameters for the rapid supplementary evaluation of RIT against brain tumors.

4.
Biochem Biophys Rep ; 27: 101071, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34286111

RESUMO

Although radiotherapy and most cancer drugs target the proliferation of cancer cells, it is metastasis, the complex process by which cancer cells spread from the primary tumor to other tissues and organs of the body where they form new tumors, that leads to over 90% of all cancer deaths. Thus, there is an urgent need for anti-metastasis strategies alongside chemotherapy and radiotherapy. An important step in the metastatic cascade is migration. It is the first step in metastasis via local invasion. Here we address the question whether ionizing radiation and/or chemotherapy might inadvertently promote metastasis and/or invasiveness by enhancing cell migration. We used a standard laboratory irradiator, Faxitron CellRad, to irradiate both non-cancer (HCN2 neurons) and cancer cells (T98G glioblastoma) with 2 Gy, 10 Gy and 20 Gy of X-rays. Paclitaxel (5 µM) was used for chemotherapy. We then measured the attachment and migration of the cells using an electric cell substrate impedance sensing device. Both the irradiated HCN2 cells and T98G cells showed significantly (p < 0.01) enhanced migration compared to non-irradiated cells, within the first 20-40 h following irradiation with 20 Gy. Our results suggest that cell migration should be a therapeutic target in anti-metastasis/anti-invasion strategies for improved radiotherapy and chemotherapy outcomes.

5.
Pharm Res ; 38(5): 851-871, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33982225

RESUMO

Polyphenols such as curcumin (Cur) and resveratrol (Res) have been recently shown to have potential to inhibit proliferation of highly aggressive melanoma cells. This study was designed to investigate the feasibility of a topical delivery system, using a solid lipid nanoparticles (SLNs) loaded delivery systems, that can enhance the skin penetration and anti-cancer efficacy of combination of these polyphenols. Negatively charged Cur-Res SLNs with a mean diameter of 180.2 ± 7.7 nm were prepared using high shear homogenization method. Cur-Res SLNs were found to be stable up to 2 weeks under 4°C. The in vitro release study showed that Res was released five time more than curcumin. The permeability of resveratrol was about 1.67 times that of curcumin from the SLN-gel formulation which was significantly (p < 0.05) lower than from SLN suspension. More than 70% of Cur-Res SLNs were bound to skin locally in a skin binding study suggesting potentially utility of Cur-Res SLNs in the treatment of localized melanoma. In fact, the electrical cell-substrate impedance sensing (ECIS) measurements suggested that Cur-Res combination has potential to stop cell migration of B16F10 melanoma cells. Furthermore, both, Cur-Res SLNs and Cur-Res solution at the ratio of 3:1 demonstrated a strong synergistic inhibition of SK-MEL-28 melanoma cell proliferation. Further evaluation of Cur-Res SLNs in vivo melanoma models are warranted to establish the clinical utility of Cur-Res formulations in melanoma therapy.


Assuntos
Curcumina/administração & dosagem , Portadores de Fármacos/química , Melanoma/tratamento farmacológico , Resveratrol/administração & dosagem , Neoplasias Cutâneas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Curcumina/farmacocinética , Combinação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Lipídeos/química , Melanoma/patologia , Camundongos , Nanopartículas , Tamanho da Partícula , Permeabilidade , Resveratrol/farmacocinética , Pele/metabolismo , Pele/patologia , Neoplasias Cutâneas/patologia , Serpentes
6.
Life (Basel) ; 10(9)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32846924

RESUMO

Microgravity or the condition of apparent weightlessness causes bone, muscular and immune system dysfunctions in astronauts following spaceflights. These organ and system-level dysfunctions correlate with changes induced at the single cell level both by simulated microgravity on earth as well as microgravity conditions in outer space (as in the international space station). Reported changes in single bone cells, muscle cells and white blood cells include structural/morphological abnormalities, changes in gene expression, protein expression, metabolic pathways and signaling pathways, suggesting that cells mount some response or adjustment to microgravity. However, the implications of such adjustments on many cellular functions and responses are not clear largely because the primary mechanism of gravity sensing in animal cells is unknown. Here, we used a rotary cell culture system developed by NASA to subject leukemic and erythroleukemic cancer cells to microgravity for 48 h and then quantified their innate immune response to common anti-cancer drugs using biophysical parameters and our recently developed quantum-dot-based fluorescence spectroscopy. We found that leukemic cancer cells treated with daunorubicin show increased chemotactic migration (p < 0.01) following simulated microgravity (µg) compared to normal gravity on earth (1 g). However, cells treated with doxorubicin showed enhanced migration both in 1 g and following µg. Our results show that microgravity modulates cancer cell response to chemotherapy in a drug-dependent manner. These results suggest using simulated microgravity as an immunomodulatory tool for the development of new immunotherapies for both space and terrestrial medicine.

7.
Methods Mol Biol ; 2135: 293-303, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32246344

RESUMO

Quantum dots (QDs) are semiconductor nanoparticles ranging in size from 2 to 10 nm. QDs are increasingly being developed for biomedical imaging, targeted drug delivery, and green energy technology. Here we describe the novel utilization of biocompatible CdSe-ZnS core-shell semiconductor nanoparticles for assessment of reactive oxygen species (ROS) in the context of chemotherapy and radiotherapy, both of which are important modalities in the treatment of cancer.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Pontos Quânticos/química , Espécies Reativas de Oxigênio/análise , Compostos de Cádmio/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Tratamento Farmacológico/métodos , Humanos , Radioterapia/efeitos adversos , Espécies Reativas de Oxigênio/química , Compostos de Selênio/química , Sulfetos/química , Compostos de Zinco/química
8.
J Biophotonics ; 12(2): e201800172, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30315626

RESUMO

Quantum dots (QDs) are semiconductor nanoparticles ranging in size from 2 to 10 nm. QDs are increasingly being developed for biomedical imaging, targeted drug delivery and green energy technology. These have led to much research on QD interactions with various physical, chemical and biological systems. For biological systems, research has focused on the biocompatibility/cytotoxicity of QDs in the context of imaging/therapy. However, there is a paucity of work on how biological systems and bioactive molecules might be used to alter the optoelectronic properties of QDs. Here, it is shown that these properties can be altered by reactive oxygen species (ROS) from chemotherapeutic media and biological cells following controlled changes in cellular activities. Using CdSe/ZnS core-shell QDs, spectroscopic analysis of optically excited QDs with HL60, K562 and T98G cancer cell lines is performed. Our results show statistically significant (P < 0.0001) modulation of the fluorescence emission spectra of the QDs due to the ROS produced by common chemotherapeutic drugs, daunorubicin and doxorubicin and by cells following chemotherapy/radiotherapy. This optical modulation, in addition to assessing ROS generation, will possibly enhance applications of QDs in simultaneous diagnostic imaging and nanoparticle-mediated drug delivery as well as simultaneous ROS assessment and radiosensitization for improved outcomes in cancer treatments. Reactive molecular species produced by biological cells and chemotherapeutic drugs can create electric fields that alter the photophysical properties of QDs, and this can be used for concurrent monitoring of cellular activities, while inducing changes in those cellular activities.


Assuntos
Compostos de Cádmio/química , Pontos Quânticos/química , Espécies Reativas de Oxigênio/metabolismo , Compostos de Selênio/química , Sulfetos/química , Compostos de Zinco/química , Linhagem Celular Tumoral , Daunorrubicina/farmacologia , Doxorrubicina/farmacologia , Humanos , Radioterapia , Espectrometria de Fluorescência
9.
Nat Methods ; 15(7): 491-498, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29915189

RESUMO

The mechanical properties of cells influence their cellular and subcellular functions, including cell adhesion, migration, polarization, and differentiation, as well as organelle organization and trafficking inside the cytoplasm. Yet reported values of cell stiffness and viscosity vary substantially, which suggests differences in how the results of different methods are obtained or analyzed by different groups. To address this issue and illustrate the complementarity of certain approaches, here we present, analyze, and critically compare measurements obtained by means of some of the most widely used methods for cell mechanics: atomic force microscopy, magnetic twisting cytometry, particle-tracking microrheology, parallel-plate rheometry, cell monolayer rheology, and optical stretching. These measurements highlight how elastic and viscous moduli of MCF-7 breast cancer cells can vary 1,000-fold and 100-fold, respectively. We discuss the sources of these variations, including the level of applied mechanical stress, the rate of deformation, the geometry of the probe, the location probed in the cell, and the extracellular microenvironment.


Assuntos
Análise de Célula Única/métodos , Fenômenos Biomecânicos , Adesão Celular , Movimento Celular , Humanos , Dispositivos Lab-On-A-Chip , Células MCF-7 , Estresse Mecânico
10.
Open Access Maced J Med Sci ; 5(7): 1011-1015, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29362637

RESUMO

AIM: This paper examines the activities of mobile services units including ultrasound services in rural and urban communities in the Calabar region of South-South, Nigeria. MATERIALS AND METHODS: Consenting individuals were invited and attended five medical outreach activities in rural and urban areas of the Calabar region between January and June 2016. Abdomino-pelvic scans were done. Subsequently the results were analyzed. RESULTS: Five hundred and seventy-four (574) individuals had Abdomino-pelvic scans done, using a curvilinear probe to assess the abdomino-pelvic organs. The female to male ratio was 1.46:1. The age ranged from 1-78 years with a mean of 40.63 (standard deviation of 17.5). The commonest sonographic finding was uterine fibroids, 21 (8.1%). Fifty-four percent of the scans were normal. The commonest sonographic finding in men was prostatic enlargement. CONCLUSION: Medical outreach activities provided by mobile units provide much needed ultrasound services in poor resource settings in Nigeria. Significant clinical pathologies were identified at fairly high rates.

11.
Biochem Biophys Res Commun ; 479(4): 841-846, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27687547

RESUMO

Although most cancer drugs target the proliferation of cancer cells, it is metastasis, the complex process by which cancer cells spread from the primary tumor to other tissues and organs of the body where they form new tumors, that leads to over 90% of all cancer deaths. Thus, there is an urgent need for anti-metastasis therapy. Surprisingly, emerging evidence suggests that certain anti-cancer drugs such as paclitaxel and doxorubicin can actually promote metastasis, but the mechanism(s) behind their pro-metastatic effects are still unclear. Here, we use a microfluidic microcirculation mimetic (MMM) platform which mimics the capillary constrictions of the pulmonary and peripheral microcirculation, to determine if in-vivo-like mechanical stimuli can evoke different responses from cells subjected to various cancer drugs. In particular, we show that leukemic cancer cells treated with doxorubicin and daunorubicin, commonly used anti-cancer drugs, have over 100% longer transit times through the device, compared to untreated leukemic cells. Such delays in the microcirculation are known to promote extravasation of cells, a key step in the metastatic cascade. Furthermore, we report a significant (p < 0.01) increase in the chemotactic migration of the doxorubicin treated leukemic cells. Both enhanced retention in the microcirculation and enhanced migration following chemotherapy, are pro-metastatic effects which can serve as new targets for anti-metastatic drugs.


Assuntos
Antineoplásicos/efeitos adversos , Leucemia Promielocítica Aguda/tratamento farmacológico , Microcirculação/efeitos dos fármacos , Fenômenos Biomecânicos , Materiais Biomiméticos , Morte Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Daunorrubicina/efeitos adversos , Doxorrubicina/efeitos adversos , Células HL-60 , Humanos , Técnicas In Vitro , Dispositivos Lab-On-A-Chip , Leucemia Promielocítica Aguda/patologia , Leucemia Promielocítica Aguda/fisiopatologia , Metástase Neoplásica
12.
Nat Methods ; 12(3): 199-202, 4 p following 202, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25643151

RESUMO

We introduce real-time deformability cytometry (RT-DC) for continuous cell mechanical characterization of large populations (>100,000 cells) with analysis rates greater than 100 cells/s. RT-DC is sensitive to cytoskeletal alterations and can distinguish cell-cycle phases, track stem cell differentiation into distinct lineages and identify cell populations in whole blood by their mechanical fingerprints. This technique adds a new marker-free dimension to flow cytometry with diverse applications in biology, biotechnology and medicine.


Assuntos
Citometria de Fluxo/instrumentação , Citometria de Fluxo/métodos , Antígenos CD34/metabolismo , Ciclo Celular , Diferenciação Celular , Linhagem da Célula , Forma Celular , Citocalasina D/farmacologia , Citoesqueleto , Desenho de Equipamento , Células HL-60/citologia , Células HL-60/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Técnicas Analíticas Microfluídicas
13.
Proc Natl Acad Sci U S A ; 111(49): 17588-93, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25422455

RESUMO

Salmonellosis is one of the leading causes of food poisoning worldwide. Controlling bacterial burden is essential to surviving infection. Nucleotide-binding oligomerization domain-like receptors (NLRs), such as NLRC4, induce inflammasome effector functions and play a crucial role in controlling Salmonella infection. Inflammasome-dependent production of IL-1ß recruits additional immune cells to the site of infection, whereas inflammasome-mediated pyroptosis of macrophages releases bacteria for uptake by neutrophils. Neither of these functions is known to directly kill intracellular salmonellae within macrophages. The mechanism, therefore, governing how inflammasomes mediate intracellular bacterial-killing and clearance in host macrophages remains unknown. Here, we show that actin polymerization is required for NLRC4-dependent regulation of intracellular bacterial burden, inflammasome assembly, pyroptosis, and IL-1ß production. NLRC4-induced changes in actin polymerization are physically manifested as increased cellular stiffness, and leads to reduced bacterial uptake, production of antimicrobial molecules, and arrested cellular migration. These processes act in concert to limit bacterial replication in the cell and dissemination in tissues. We show, therefore, a functional link between innate immunity and actin turnover in macrophages that underpins a key host defense mechanism for the control of salmonellosis.


Assuntos
Actinas/metabolismo , Imunidade Inata , Inflamassomos/imunologia , Macrófagos/microbiologia , Infecções por Salmonella/imunologia , Citoesqueleto de Actina/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Células da Medula Óssea/citologia , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 1/metabolismo , Citoesqueleto/metabolismo , Peróxido de Hidrogênio/química , Inflamação/imunologia , Interleucina-1beta/metabolismo , Macrófagos/citologia , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Neutrófilos/imunologia , Polimerização , Espécies Reativas de Oxigênio/metabolismo , Salmonella typhimurium
14.
J Biophotonics ; 6(5): 393-7, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22887897

RESUMO

Infection of cells by pathogens leads to both biochemical and structural modifications of the host cell. To study the structural modifications in a label-free manner, we use digital holographic microscopy, DHM, to obtain the integral refractive index distribution of cells. Primary murine bone marrow derived macrophages (BMDM) infected with Salmonella enterica serovar Typhimurium, undergo highly significant reduction in refractive index, RI, compared to uninfected cells. Infected BMDM cells from genetically modified mice lacking an inflammatory protein that causes cell death, caspase 1, also exhibit similar decrease in RI. These data suggest that any reduction in RI of Salmonella-infected BMDMs is pathogen induced and independent of caspase 1-induced inflammation or cell death. This finding suggests DHM may be useful for general real time monitoring of host cell interactions with infectious pathogens.


Assuntos
Macrófagos/microbiologia , Fenômenos Ópticos , Salmonella typhimurium/fisiologia , Animais , Células da Medula Óssea/citologia , Caspase 1/metabolismo , Macrófagos/enzimologia , Camundongos
15.
PLoS One ; 7(9): e45237, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028868

RESUMO

Although cellular mechanical properties are known to alter during stem cell differentiation, understanding of the functional relevance of such alterations is incomplete. Here, we show that during the course of differentiation of human myeloid precursor cells into three different lineages, the cells alter their viscoelastic properties, measured using an optical stretcher, to suit their ultimate fate and function. Myeloid cells circulating in blood have to be advected through constrictions in blood vessels, engendering the need for compliance at short time-scales (minutes), compared to undifferentiated cells. These findings suggest that reduction in steady-state viscosity is a physiological adaptation for enhanced migration through tissues. Our results indicate that the material properties of cells define their function, can be used as a cell differentiation marker and could serve as target for novel therapies.


Assuntos
Adaptação Fisiológica , Células Sanguíneas/fisiologia , Macrófagos/fisiologia , Monócitos/fisiologia , Células Mieloides/fisiologia , Neutrófilos/fisiologia , Fenômenos Biomecânicos , Diferenciação Celular , Linhagem Celular , Movimento Celular , Hemodinâmica , Humanos , Microfluídica , Cultura Primária de Células , Viscosidade
16.
J Biophotonics ; 2(8-9): 521-7, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19593764

RESUMO

Diffraction imaging of polystyrene spheres and B16F10 mouse melanoma cells embedded in gel has been investigated with a microscope objective. The diffraction images acquired with the objective from a sphere have been shown to be comparable to the Mie theory based projection images of the scattered light if the objective is translated to defocused positions towards the sphere. Using a confocal imaging based method to reconstruct and analyze the 3D structure, we demonstrated that genetic modifications in these cells can induce morphological changes and the modified cells can be used as an experimental model for study of the correlation between 3D morphology features and diffraction image data.


Assuntos
Melanoma/patologia , Poliestirenos/química , Espalhamento de Radiação , Animais , Linhagem Celular Tumoral , Imageamento Tridimensional , Luz , Melanoma/genética , Camundongos , Microscopia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA