RESUMO
There is an increased interest in secondary plant metabolites, such as polyphenols and carotenoids, due to their proposed health benefits. Much attention has focused on their bioavailability, a prerequisite for further physiological functions. As human studies are time consuming, costly, and restricted by ethical concerns, in vitro models for investigating the effects of digestion on these compounds have been developed and employed to predict their release from the food matrix, bioaccessibility, and assess changes in their profiles prior to absorption. Most typically, models simulate digestion in the oral cavity, the stomach, the small intestine, and, occasionally, the large intestine. A plethora of models have been reported, the choice mostly driven by the type of phytochemical studied, whether the purpose is screening or studying under close physiological conditions, and the availability of the model systems. Unfortunately, the diversity of model conditions has hampered the ability to compare results across different studies. For example, there is substantial variability in the time of digestion, concentrations of salts, enzymes, and bile acids used, pH, the inclusion of various digestion stages; and whether chosen conditions are static (with fixed concentrations of enzymes, bile salts, digesta, and so on) or dynamic (varying concentrations of these constituents). This review presents an overview of models that have been employed to study the digestion of both lipophilic and hydrophilic phytochemicals, comparing digestive conditions in vitro and in vivo and, finally, suggests a set of parameters for static models that resemble physiological conditions.
RESUMO
This study was designed to determine the total phenols (TP) and total antioxidant activity (TAA) of some liquid and solid plant foods that are commonly consumed in Turkey. Total phenols were analysed according to the Folin-Ciocalteu method and antioxidant activities of these compounds in aqueous phase were assessed by measuring their direct ABTS.- radical scavenging abilities. Total phenols varied from 68 to 4162 mg/l for liquid foods and from 735 to 3994 mg/kg for solid foods. TAA of liquid and solid foods ranged between 0.61-6.78 mM and 0.63-8.62 mM, respectively. Total antioxidant activities of foods were well correlated with total phenols (r2 = 0.95). According to content of total phenols per serving, liquid foods were in the order of black tea > instant coffee > coke > red wine > violet carrot juice > apricot nectar > Turkish coffee > grape molasses > sage > white wine > linden flower, and solid foods were in the order of red grape > raisins > tarhana > dried black plum > dried apricot > grape > fresh paprika > fresh black plum > Urtica sp. > cherry > fresh apricot > paprika pickle > paprika paste.