Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Life Sci Alliance ; 2(3)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31142640

RESUMO

Global, segmental, and gene duplication-related processes are driving genome size and complexity in plants. Despite their evolutionary potentials, those processes can also have adverse effects on genome regulation, thus implying the existence of specialized corrective mechanisms. Here, we report that an N6-methyladenosine (m6A)-assisted polyadenylation (m-ASP) pathway ensures transcriptome integrity in Arabidopsis thaliana Efficient m-ASP pathway activity requires the m6A methyltransferase-associated factor FIP37 and CPSF30L, an m6A reader corresponding to an YT512-B Homology Domain-containing protein (YTHDC)-type domain containing isoform of the 30-kD subunit of cleavage and polyadenylation specificity factor. Targets of the m-ASP pathway are enriched in recently rearranged gene pairs, displayed an atypical chromatin signature, and showed transcriptional readthrough and mRNA chimera formation in FIP37- and CPSF30L-deficient plants. Furthermore, we showed that the m-ASP pathway can also restrict the formation of chimeric gene/transposable-element transcript, suggesting a possible implication of this pathway in the control of transposable elements at specific locus. Taken together, our results point to selective recognition of 3'-UTR m6A as a safeguard mechanism ensuring transcriptome integrity at rearranged genomic loci in plants.


Assuntos
Adenosina/análogos & derivados , Regulação da Expressão Gênica de Plantas , Plantas/genética , Plantas/metabolismo , Transdução de Sinais , Transcriptoma , Adenosina/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Perfilação da Expressão Gênica , Loci Gênicos , Mutação , Poliadenilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica
2.
Nat Genet ; 51(5): 877-884, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043755

RESUMO

Like many other crops, the cultivated peanut (Arachis hypogaea L.) is of hybrid origin and has a polyploid genome that contains essentially complete sets of chromosomes from two ancestral species. Here we report the genome sequence of peanut and show that after its polyploid origin, the genome has evolved through mobile-element activity, deletions and by the flow of genetic information between corresponding ancestral chromosomes (that is, homeologous recombination). Uniformity of patterns of homeologous recombination at the ends of chromosomes favors a single origin for cultivated peanut and its wild counterpart A. monticola. However, through much of the genome, homeologous recombination has created diversity. Using new polyploid hybrids made from the ancestral species, we show how this can generate phenotypic changes such as spontaneous changes in the color of the flowers. We suggest that diversity generated by these genetic mechanisms helped to favor the domestication of the polyploid A. hypogaea over other diploid Arachis species cultivated by humans.


Assuntos
Arachis/genética , Arachis/classificação , Argentina , Cromossomos de Plantas/genética , Produtos Agrícolas/genética , Metilação de DNA , DNA de Plantas/genética , Domesticação , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Variação Genética , Genoma de Planta , Hibridização Genética , Fenótipo , Poliploidia , Recombinação Genética , Especificidade da Espécie , Tetraploidia
3.
Mol Plant ; 11(3): 485-495, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29476915

RESUMO

Most plants are polyploid due to whole-genome duplications (WGD) and can thus have duplicated genes. Following a WGD, paralogs are often fractionated (lost) and few duplicate pairs remain. Little attention has been paid to the role of DNA methylation in the functional divergence of paralogous genes. Using high-resolution methylation maps of accessions of domesticated and wild soybean, we show that in soybean, a recent paleopolyploid with many paralogs, DNA methylation likely contributed to the elimination of genetic redundancy of polyploidy-derived gene paralogs. Transcriptionally silenced paralogs exhibit particular genomic features as they are often associated with proximal transposable elements (TEs) and are preferentially located in pericentromeres, likely due to gene movement during evolution. Additionally, we provide evidence that gene methylation associated with proximal TEs is implicated in the divergence of expression profiles between orthologous genes of wild and domesticated soybean, and within populations.


Assuntos
Metilação de DNA/genética , Elementos de DNA Transponíveis/genética , Glycine max/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Poliploidia
4.
New Phytol ; 213(3): 1477-1486, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27551821

RESUMO

The origin of bread wheat (Triticum aestivum; AABBDD) has been a subject of controversy and of intense debate in the scientific community over the last few decades. In 2015, three articles published in New Phytologist discussed the origin of hexaploid bread wheat (AABBDD) from the diploid progenitors Triticum urartu (AA), a relative of Aegilops speltoides (BB) and Triticum tauschii (DD). Access to new genomic resources since 2013 has offered the opportunity to gain novel insights into the paleohistory of modern bread wheat, allowing characterization of its origin from its diploid progenitors at unprecedented resolution. We propose a reconciled evolutionary scenario for the modern bread wheat genome based on the complementary investigation of transposable element and mutation dynamics between diploid, tetraploid and hexaploid wheat. In this scenario, the structural asymmetry observed between the A, B and D subgenomes in hexaploid bread wheat derives from the cumulative effect of diploid progenitor divergence, the hybrid origin of the D subgenome, and subgenome partitioning following the polyploidization events.


Assuntos
Evolução Biológica , Pão , Triticum/genética , Elementos de DNA Transponíveis/genética , Genoma de Planta , Modelos Genéticos , Mutagênese Insercional/genética , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Sintenia/genética
5.
Plant Physiol ; 168(4): 1433-47, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26149573

RESUMO

Soybean (Glycine max) and common bean (Phaseolus vulgaris) share a paleopolyploidy (whole-genome duplication [WGD]) event, approximately 56.5 million years ago, followed by a genus Glycine-specific polyploidy, approximately 10 million years ago. Cytosine methylation is an epigenetic mark that plays an important role in the regulation of genes and transposable elements (TEs); however, the role of DNA methylation in the fate/evolution of genes following polyploidy and speciation has not been fully explored. Whole-genome bisulfite sequencing was used to produce nucleotide resolution methylomes for soybean and common bean. We found that, in soybean, CG body-methylated genes were abundant in WGD genes, which were, on average, more highly expressed than single-copy genes and had slower evolutionary rates than unmethylated genes, suggesting that WGD genes evolve more slowly than single-copy genes. CG body-methylated genes were also enriched in shared single-copy genes (single copy in both species) that may be responsible for the broad and high expression patterns of this class of genes. In addition, diverged methylation patterns in non-CG contexts between paralogs were due mostly to TEs in or near genes, suggesting a role for TEs and non-CG methylation in regulating gene expression post polyploidy. Reference methylomes for both soybean and common bean were constructed, providing resources for investigating epigenetic variation in legume crops. Also, the analysis of methylation patterns of duplicated and single-copy genes has provided insights into the functional consequences of polyploidy and epigenetic regulation in plant genomes.


Assuntos
Epigênese Genética , Epigenômica/métodos , Genes de Plantas/genética , Glycine max/genética , Phaseolus/genética , Poliploidia , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Metilação de DNA , Elementos de DNA Transponíveis , Ontologia Genética , Genoma de Planta/genética , Phaseolus/classificação , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Glycine max/classificação , Especificidade da Espécie , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA