Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell Death Discov ; 10(1): 330, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030180

RESUMO

Rhabdomyosarcoma 2-associated transcript (RMST) long non-coding RNA has previously been shown to cause Kallmann syndrome (KS), a rare genetic disorder characterized by congenital hypogonadotropic hypogonadism (CHH) and olfactory dysfunction. In the present study, we generated large deletions of approximately 41.55 kb in the RMST gene in human pluripotent stem cells using CRISPR/Cas9 gene editing. To evaluate the impact of RMST deletion, these cells were differentiated into hypothalamic neurons that include 10-15% neurons that express gonadotrophin-releasing hormone (GnRH). We found that deletion in RMST did not impair the neurogenesis of GnRH neurons, however, the hypothalamic neurons were electro-physiologically hyperactive and had increased calcium influx activity compared to control. Transcriptomic and epigenetic analyses showed that RMST deletion caused altered expression of key genes involved in neuronal development, ion channels, synaptic signaling and cell adhesion. The in vitro generation of these RMST-deleted GnRH neurons provides an excellent cell-based model to dissect the molecular mechanism of RMST function in Kallmann syndrome and its role in hypothalamic neuronal development.

2.
Front Immunol ; 15: 1399676, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919619

RESUMO

The global impact of the SARS-CoV-2 pandemic has been unprecedented, posing a significant public health challenge. Chronological age has been identified as a key determinant for severe outcomes associated with SARS-CoV-2 infection. Epigenetic age acceleration has previously been observed in various diseases including human immunodeficiency virus (HIV), Cytomegalovirus (CMV), cardiovascular diseases, and cancer. However, a comprehensive review of this topic is still missing in the field. In this review, we explore and summarize the research work focusing on biological aging markers, i.e., epigenetic age and telomere attrition in COVID-19 patients. From the reviewed articles, we identified a consistent pattern of epigenetic age dysregulation and shortened telomere length, revealing the impact of COVID-19 on epigenetic aging and telomere attrition.


Assuntos
Envelhecimento , COVID-19 , Epigênese Genética , SARS-CoV-2 , Humanos , COVID-19/imunologia , Envelhecimento/imunologia , SARS-CoV-2/fisiologia , Telômero , Encurtamento do Telômero
3.
Front Oncol ; 14: 1359652, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38454929

RESUMO

Background: Glioblastoma is one of the most aggressive primary brain tumors, with a poor outcome despite multimodal treatment. Methylation of the MGMT promoter, which predicts the response to temozolomide, is a well-established prognostic marker for glioblastoma. However, a difference in survival can still be detected within the MGMT methylated group, with some patients exhibiting a shorter survival than others, emphasizing the need for additional predictive factors. Methods: We analyzed DIAPH3 expression in glioblastoma samples from the cancer genome atlas (TCGA). We also retrospectively analyzed one hundred seventeen histological glioblastomas from patients operated on at Saint-Luc University Hospital between May 2013 and August 2019. We analyzed the DIAPH3 expression, explored the relationship between mRNA levels and Patient's survival after the surgical resection. Finally, we assessed the methylation pattern of the DIAPH3 promoter using a targeted deep bisulfite sequencing approach. Results: We found that 36% and 1% of the TCGA glioblastoma samples exhibit copy number alterations and mutations in DIAPH3, respectively. We scrutinized the expression of DIAPH3 at single cell level and detected an overlap with MKI67 expression in glioblastoma proliferating cells, including neural progenitor-like, oligodendrocyte progenitor-like and astrocyte-like states. We quantitatively analyzed DIAPH3 expression in our cohort and uncovered a positive correlation between DIAPH3 mRNA level and patient's survival. The effect of DIAPH3 was prominent in MGMT-methylated glioblastoma. Finally, we report that the expression of DIAPH3 is at least partially regulated by the methylation of three CpG sites in the promoter region. Conclusion: We propose that combining the DIAPH3 expression with MGMT methylation could offer a better prediction of survival and more adapted postsurgical treatment for patients with MGMT-methylated glioblastoma.

4.
Mol Syndromol ; 14(3): 219-224, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37323196

RESUMO

Introduction: Overgrowth syndromes are a heterogeneous group of genetic disorders characterized by excessive growth, often accompanied by additional clinical features, such as facial dysmorphism, hormonal imbalances, cognitive impairment, and increased risk for neoplasia. Moreno-Nishimura-Schmidt (M-N-S) overgrowth syndrome is a very rare overgrowth syndrome characterized by severe pre- and postnatal overgrowth, dysmorphic facial features, kyphoscoliosis, large hands and feet, inguinal hernia, and distinctive skeletal features. The clinical and radiological features of the disorder have been well delineated, yet its molecular pathogenesis remains unclear. Case Presentation: We report on a Lebanese boy with M-N-S syndrome, whose clinical manifestations were compared with those of previously reported 5 affected individuals. Whole-exome sequencing combined with comparative genome hybridization analysis failed to delineate the molecular basis of the phenotype. However, epigenetic studies revealed a different methylation status of several CpG sites between him and healthy controls, with methyltransferase activity showing the most significant enrichment. Conclusion: An additional case of M-N-S syndrome recapitulated the clinical and radiological manifestations described in the previous reports. The data in the epigenetic studies implicated that abnormal methylations might play an essential role in development of the disease phenotype. However, additional studies in a clinically homogeneous cohort of patients are crucial to confirm this hypothesis.

5.
Hum Mol Genet ; 32(11): 1826-1835, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-36715159

RESUMO

Berardinelli-Seip congenital lipodystrophy type 2 (CGL2) is a very rare human genetic disorder with potential significance to the understanding of the pathobiology of aging. CGL2 patients display characteristic progeroid features and suffer from type 2 diabetes, insulin resistance and fatty liver. In this study, we profiled genome-wide DNA methylation levels in CGL2 patients with BSCL2 mutations to study epigenetic age acceleration and DNA methylation alterations. This analysis revealed significant age acceleration in blood DNA of CGL2 patients using both first- and second-generation epigenetic clocks. We also observed a shortened lifespan of Caenorhabditis elegans following knockdown of the BSCL2 homolog seip-1 on a daf-16/forkhead box, class O mutant background. DNA methylation analysis revealed significant differentially methylated sites enriched for lyase activity, kinase regulator activity, protein kinase regulator activity and kinase activator activity. We could also observe significant hypomethylation in the promoter of the dual specificity phosphatase 22 gene when comparing CGL2 patients versus controls. We conclude that in line with the observed progeroid features, CGL2 patients exhibit significant epigenetic age acceleration and DNA methylation alterations that might affect pathways/genes of potential relevance to the disease.


Assuntos
Diabetes Mellitus Tipo 2 , Subunidades gama da Proteína de Ligação ao GTP , Lipodistrofia Generalizada Congênita , Lipodistrofia , Humanos , Lipodistrofia Generalizada Congênita/genética , Metilação de DNA/genética , Diabetes Mellitus Tipo 2/genética , Mutação , Envelhecimento/genética , Epigênese Genética , Lipodistrofia/genética
6.
Nat Genet ; 51(12): 1691-1701, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31740836

RESUMO

In the mammalian genome, the clustered protocadherin (cPCDH) locus provides a paradigm for stochastic gene expression with the potential to generate a unique cPCDH combination in every neuron. Here we report a chromatin-based mechanism that emerges during the transition from the naive to the primed states of cell pluripotency and reduces, by orders of magnitude, the combinatorial potential in the human cPCDH locus. This mechanism selectively increases the frequency of stochastic selection of a small subset of cPCDH genes after neuronal differentiation in monolayers, 10-month-old cortical organoids and engrafted cells in the spinal cords of rats. Signs of these frequent selections can be observed in the brain throughout fetal development and disappear after birth, except in conditions of delayed maturation such as Down's syndrome. We therefore propose that a pattern of limited cPCDH-gene expression diversity is maintained while human neurons still retain fetal-like levels of maturation.


Assuntos
Caderinas/genética , Cromatina/genética , Síndrome de Down/patologia , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/fisiologia , Adulto , Animais , Astrócitos/citologia , Astrócitos/fisiologia , Encéfalo/citologia , Encéfalo/embriologia , Diferenciação Celular , Linhagem Celular , Síndrome de Down/genética , Regulação da Expressão Gênica , Histonas/genética , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos , Pessoa de Meia-Idade , Neurônios/citologia , Regiões Promotoras Genéticas , Ratos , Análise de Célula Única , Medula Espinal/citologia , Medula Espinal/transplante , Transplante Heterólogo
7.
Genes Chromosomes Cancer ; 58(11): 783-797, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31334584

RESUMO

Aberrant methylation of DNA is supposed to be a major and early driver of colonic adenoma development, which may result in colorectal cancer (CRC). Although gene methylation assays are used already for CRC screening, differential epigenetic alterations of recurring and nonrecurring colorectal adenomas have yet not been systematically investigated. Here, we collected a sample set of formalin-fixed paraffin-embedded colorectal low-grade adenomas (n = 72) consisting of primary adenomas without and with recurrence (n = 59), recurrent adenomas (n = 10), and normal mucosa specimens (n = 3). We aimed to unveil differentially methylated CpG positions (DMPs) across the methylome comparing not only primary adenomas without recurrence vs primary adenomas with recurrence but also primary adenomas vs recurrent adenomas using the Illumina Human Methylation 450K BeadChip array. Unsupervised hierarchical clustering exhibited a significant association of methylation patterns with histological adenoma subtypes. No significant DMPs were identified comparing primary adenomas with and without recurrence. Despite that, a total of 5094 DMPs (false discovery rate <0.05; fold change >10%) were identified in the comparisons of recurrent adenomas vs primary adenomas with recurrence (674; 98% hypermethylated), recurrent adenomas vs primary adenomas with and without recurrence (241; 99% hypermethylated) and colorectal adenomas vs normal mucosa (4179; 46% hypermethylated). DMPs in cytosine-phosphate-guanine (CpG) islands were frequently hypermethylated, whereas open sea- and shelf-regions exhibited hypomethylation. Gene ontology analysis revealed enrichment of genes associated with the immune system, inflammatory processes, and cancer pathways. In conclusion, our methylation data could assist in establishing a more robust and reproducible histological adenoma classification, which is a prerequisite for improving surveillance guidelines.


Assuntos
Neoplasias Colorretais/genética , Ilhas de CpG/genética , Epigênese Genética/genética , Adenoma/genética , Idoso , Biomarcadores Tumorais/genética , Citosina , Metilação de DNA/genética , Detecção Precoce de Câncer/métodos , Epigenômica , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Genoma Humano , Guanina , Técnicas Histológicas/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Fosfatos , Regiões Promotoras Genéticas/genética
8.
Semin Cell Dev Biol ; 69: 172-182, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28694114

RESUMO

Protocadherins (Pcdhs) are a group of cell-cell adhesion molecules that are highly expressed in the nervous system and have a major function in dendrite development and neural circuit formation. However, the role protocadherins play in human health and disease remains unclear. Several recent studies have associated epigenetic dysregulation of protocadherins with possible implications for disease pathogenesis. In this review, we briefly recap the various epigenetic mechanisms regulating protocadherin genes, particularly the clustered Pcdhs. We further outline research describing altered epigenetic regulation of protocadherins in neurological and psychiatric disorders, as well as in cancer and during aging. We additionally present preliminary data on DNA methylation dynamics of clustered protocadherins during fetal brain development, as well as the epigenetic differences distinguishing adult neuronal and glial cells. A deeper understanding of the role of protocadherins in disease is crucial for designing novel diagnostic tools and therapies targeting brain disorders.


Assuntos
Caderinas/genética , Doença/genética , Epigênese Genética , Animais , Encefalopatias/genética , Encefalopatias/patologia , Caderinas/metabolismo , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Humanos
9.
PLoS One ; 11(6): e0157930, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27362416

RESUMO

Immunological abnormalities associated with pathological conditions, such as higher infection rates, inflammatory diseases, cancer or cardiovascular events are common in patients with panic disorder. In the present study, T cell receptor excision circles (TRECs), Forkhead-Box-Protein P3 gene (FOXP3) methylation of regulatory T cells (Tregs) and relative telomere lengths (RTLs) were investigated in a total and subsamples of 131 patients with panic disorder as compared to 131 age- and sex-matched healthy controls in order to test for a potential dysfunction and premature aging of the immune system in anxiety disorders. Significantly lower TRECs (p = 0.004) as well as significant hypermethylation of the FOXP3 promoter region (p = 0.005) were observed in female (but not in male) patients with panic disorder as compared to healthy controls. No difference in relative telomere length was discerned between patients and controls, but significantly shorter telomeres in females, smokers and older persons within the patient group. The presently observed reduced TRECs in panic disorder patients and FOXP3 hypermethylation in female patients with panic disorder potentially reflect impaired thymus and immunosuppressive Treg function, which might partly account for the known increased morbidity and mortality of anxiety disorders conferred by e.g. cancer and cardiovascular disorders.


Assuntos
Metilação de DNA , Fatores de Transcrição Forkhead/genética , Transtorno de Pânico/genética , Regiões Promotoras Genéticas , Linfócitos T Reguladores/patologia , Adulto , Estudos de Casos e Controles , Senescência Celular , Feminino , Humanos , Sistema Imunitário , Masculino , Pessoa de Meia-Idade , Transtorno de Pânico/imunologia , Fatores de Risco , Caracteres Sexuais , Linfócitos T Reguladores/imunologia , Telômero/metabolismo , Telômero/patologia , Encurtamento do Telômero
10.
Fertil Steril ; 103(3): 720-7.e1, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25572872

RESUMO

OBJECTIVE: To study the possible transmission, to the next generation, of epigenetic defects associated with in vitro maturation (IVM) of human oocytes. DESIGN: Case-control study using epigenetic data. SETTING: Two collaborating university departments. PATIENT(S): Eleven IVM newborns and 19 controls, conceived by conventional assisted reproduction. INTERVENTION(S): Chorionic villus and cord-blood sampling. MAIN OUTCOME MEASURE(S): Using bisulfite pyrosequencing, we have measured average methylation levels of 6 imprinted (LIT1, MEG, MEST, NESPas, PEG3, and SNRPN), 5 tumor-suppressor (APC, ATM, BRCA1, RAD51C, and TP53), 2 pluripotency (NANOG and OCT4), and 2 metabolic (LEP and NR3C1) genes, as well as 2 repetitive elements (ALU and LINE1) in 2 tissues of IVM and control neonates. Using deep bisulfite sequencing, we have determined methylation patterns of many individual DNA molecules to detect rare RAD51C epimutations (allele methylation errors). RESULT(S): No statistically significant impact was found of IVM on chorionic villus and cord-blood DNA methylation at the studied developmentally important genes and interspersed repeats. The RAD51C epimutation rate was low (0.5% ± 0.1%) in all analyzed samples. CONCLUSION(S): IVM-induced epigenetic changes in offspring, if any, are relatively small in magnitude and/or infrequent.


Assuntos
Metilação de DNA , Epigênese Genética , Fertilização in vitro , Técnicas de Maturação in Vitro de Oócitos , Injeções de Esperma Intracitoplásmicas , Adulto , Estudos de Casos e Controles , Feminino , Fertilização in vitro/efeitos adversos , Sangue Fetal/metabolismo , Impressão Genômica , Humanos , Técnicas de Maturação in Vitro de Oócitos/estatística & dados numéricos , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Gravidez , Injeções de Esperma Intracitoplásmicas/efeitos adversos
11.
Gene ; 525(1): 136-40, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23644024

RESUMO

AIMS: The Natural Killer Cell Immunoglobulin-like Receptor (KIR) genotype profiling in Follicular Lymphoma has not been reported before in the literature. MATERIALS AND METHODS: DNA extracted from 20 Follicular Lymphoma patients and 62 healthy controls was analyzed for KIR genotyping using a polymerase chain reaction/sequence specific primers technique (PCR/SSP) for the presence of 16 KIR gene and pseudogene loci. RESULTS: The AA, AB, and BB genotype frequencies were, respectively, 20%, 60% and 20% with an A:B ratio of 1:1. KIR 2DL4, KIR 3DL2, KIR 3DL3, and KIR 3DP1*003 were presented in all individuals. No significant difference between patients and controls was detected. CONCLUSION: KIR genotyping profile does not seem to be associated with Follicular Lymphoma. The results presented in this pilot research represent the first international report about this important clinical entity.


Assuntos
Linfoma Folicular/genética , Receptores KIR/genética , Estudos de Casos e Controles , Frequência do Gene , Haplótipos , Humanos , Projetos Piloto
12.
Diabetes ; 62(4): 1320-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23209187

RESUMO

Epigenetic processes are primary candidates when searching for mechanisms that can stably modulate gene expression and metabolic pathways according to early life conditions. To test the effects of gestational diabetes mellitus (GDM) on the epigenome of the next generation, cord blood and placenta tissue were obtained from 88 newborns of mothers with dietetically treated GDM, 98 with insulin-dependent GDM, and 65 without GDM. Bisulfite pyrosequencing was used to compare the methylation levels of seven imprinted genes involved in prenatal and postnatal growth, four genes involved in energy metabolism, one anti-inflammatory gene, one tumor suppressor gene, one pluripotency gene, and two repetitive DNA families. The maternally imprinted MEST gene, the nonimprinted glucocorticoid receptor NR3C1 gene, and interspersed ALU repeats showed significantly decreased methylation levels (4-7 percentage points for MEST, 1-2 for NR3C1, and one for ALUs) in both GDM groups, compared with controls, in both analyzed tissues. Significantly decreased blood MEST methylation (3 percentage points) also was observed in adults with morbid obesity compared with normal-weight controls. Our results support the idea that intrauterine exposure to GDM has long-lasting effects on the epigenome of the offspring. Specifically, epigenetic malprogramming of MEST may contribute to obesity predisposition throughout life.


Assuntos
Metilação de DNA/fisiologia , Diabetes Gestacional/metabolismo , Epigênese Genética/fisiologia , Obesidade/genética , Efeitos Tardios da Exposição Pré-Natal , Proteínas/metabolismo , Adulto , Diabetes Gestacional/dietoterapia , Diabetes Gestacional/tratamento farmacológico , Feminino , Sangue Fetal , Regulação da Expressão Gênica/fisiologia , Humanos , Recém-Nascido , Insulina/uso terapêutico , Família Multigênica , Placenta , Gravidez , Proteínas/genética
13.
Basic Res Cardiol ; 107(5): 283, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22791246

RESUMO

Nox4 is a member of the NADPH oxidase family, which represents a major source of reactive oxygen species (ROS) in the vascular wall. Nox4-mediated ROS production mainly depends on the expression levels of the enzyme. The present study was aimed to investigate the mechanisms of Nox4 transcription regulation by histone deacetylases (HDAC). In human umbilical vein endothelial cells (HUVEC) and HUVEC-derived EA.hy 926 cells, treatment with the pan-HDAC inhibitor scriptaid led to a marked decrease in Nox4 mRNA expression. A similar down-regulation of Nox4 mRNA expression was observed by siRNA-mediated knockdown of HDAC3. HDAC inhibition in endothelial cells was associated with enhanced histone acetylation, increased chromatin accessibility in the human Nox4 promoter region, with no significant changes in DNA methylation. In addition, we provided evidence that c-Jun played an important role in controlling Nox4 transcription. Knockdown of c-Jun with siRNA led to a down-regulation of Nox4 mRNA expression. In response to scriptaid treatment, the binding of c-Jun to the Nox4 promoter region was reduced despite the open chromatin structure. In parallel, the binding of RNA polymerase IIa to the Nox4 promoter was significantly inhibited as well, which may explain the reduction in Nox4 transcription. In conclusion, HDAC inhibition decreases Nox4 transcription in human endothelial cells by preventing the binding of transcription factor(s) and polymerase(s) to the Nox4 promoter, most likely because of a hyperacetylation-mediated steric inhibition.


Assuntos
Células Endoteliais/enzimologia , Histona Desacetilases/fisiologia , NADPH Oxidases/genética , Transcrição Gênica , Sequência de Bases , Células Cultivadas , Metilação de DNA , Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Humanos , Dados de Sequência Molecular , NADPH Oxidase 4 , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-jun/fisiologia
14.
Epigenetics ; 7(1): 47-54, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22207351

RESUMO

We describe monozygotic twins discordant for childhood leukemia and secondary thyroid carcinoma. We used bisulfite pyrosequencing to compare the constitutive promoter methylation of BRCA1 and several other tumor suppressor genes in primary fibroblasts. The affected twin displayed an increased BRCA1 methylation (12%), compared with her sister (3%). Subsequent bisulfite plasmid sequencing demonstrated that 13% (6 of 47) BRCA1 alleles were fully methylated in the affected twin, whereas her sister displayed only single CpG errors without functional implications. This between-twin methylation difference was also found in irradiated fibroblasts and untreated saliva cells. The BRCA1 epimutation may have originated by an early somatic event in the affected twin: approximately 25% of her body cells derived from different embryonic cell lineages carry one epigenetically inactivated BRCA1 allele. This epimutation was associated with reduced basal protein levels and a higher induction of BRCA1 after DNA damage. In addition, we performed a genome-wide microarray analysis of both sisters and found several copy number variations, i.e., heterozygous deletion and reduced expression of the RSPO3 gene in the affected twin. This monozygotic twin pair represents an impressive example of epigenetic somatic mosaicism, suggesting a role for constitutive epimutations, maybe along with de novo genetic alterations in recurrent tumor development.


Assuntos
Metilação de DNA , Genes BRCA1 , Leucemia de Células B/genética , Regiões Promotoras Genéticas , Neoplasias da Glândula Tireoide/genética , Gêmeos Monozigóticos/genética , Adulto , Deleção Cromossômica , Ilhas de CpG , Feminino , Humanos , Análise de Sequência de DNA/métodos
15.
Hum Reprod ; 25(12): 3025-42, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20940142

RESUMO

BACKGROUND: Cryopreservation of follicles for culture and oocyte growth and maturation in vitro provides an option to increase the number of fertilizable oocytes and restore fertility in cases where transplantation of ovarian tissue poses a risk for malignant cell contamination. Vitrification for cryopreservation is fast and avoids ice crystal formation. However, the influences of exposure to high concentrations of cryoprotectants on follicle development, oocyte growth and maturation, and particularly, on the DNA integrity and methylation imprinting has not been studied systematically. METHODS: Follicle survival and development, DNA damage, oocyte growth patterns, maturation, spindle formation and chromosomal constitution were studied after Cryo-Top vitrification of mouse pre-antral follicles cultured to the antral stage and induced to ovulate in vitro. Methylation of differentially methylated regions (DMRs) of two maternally (Snrpn and Igf2r) and one paternally (H19) imprinted genes was studied by bisulfite pyrosequencing. RESULTS: Vitrification results in partial or total loss of oocyte-granulosa cell apposition and actin-rich transzonal projections, a transient increase in DNA breaks and a delay in follicle development. However, the oocyte growth pattern, maturation, spindle and chromosomal constitution are not significantly different between the vitrified and the control groups. Vitrification is not associated with elevated levels of imprinting mutations (aberrant methylation of the entire DMR), although the distribution of sporadic CpG methylation errors in the Snrpn DMR appears to differ slightly between control and vitrified oocytes. CONCLUSIONS: DNA breaks appear to be rapidly repaired and vitrification of oocytes inside pre-antral follicles by the Cryo-Top method does not appear to increase risks of abnormal imprinting or disturbances in spindle formation and chromosome segregation.


Assuntos
Dano ao DNA/fisiologia , Impressão Genômica/fisiologia , Oócitos/fisiologia , Folículo Ovariano/fisiologia , Vitrificação , Animais , Ilhas de CpG/fisiologia , Criopreservação/métodos , DNA/metabolismo , Metilação de DNA , Reparo do DNA/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Oogênese , Fuso Acromático/fisiologia , Proteínas Centrais de snRNP/metabolismo
16.
Nucleic Acids Res ; 38(12): 3880-90, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20194112

RESUMO

DNA methylation is an epigenetic modification that plays an important role in gene regulation. It can be influenced by stochastic events, environmental factors and developmental programs. However, little is known about the natural variation of gene-specific methylation patterns. In this study, we performed quantitative methylation analyses of six differentially methylated imprinted genes (H19, MEG3, LIT1, NESP55, PEG3 and SNRPN), one hypermethylated pluripotency gene (OCT4) and one hypomethylated tumor suppressor gene (APC) in chorionic villus, fetal and adult cortex, and adult blood samples. Both average methylation level and range of methylation variation depended on the gene locus, tissue type and/or developmental stage. We found considerable variability of functionally important methylation patterns among unrelated healthy individuals and a trend toward more similar methylation levels in monozygotic twins than in dizygotic twins. Imprinted genes showed relatively little methylation changes associated with aging in individuals who are >25 years. The relative differences in methylation among neighboring CpGs in the generally hypomethylated APC promoter may not only reflect stochastic fluctuations but also depend on the tissue type. Our results are consistent with the view that most methylation variation may arise after fertilization, leading to epigenetic mosaicism.


Assuntos
Metilação de DNA , Epigênese Genética , Fatores Etários , Ilhas de CpG , Genes Supressores de Tumor , Variação Genética , Impressão Genômica , Crescimento e Desenvolvimento/genética , Humanos , Masculino , Gêmeos Dizigóticos , Gêmeos Monozigóticos
17.
Mol Hum Reprod ; 16(9): 704-13, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20007506

RESUMO

To study possible effects of assisted reproductive technologies (ART) on epigenetic reprogramming, we have analyzed the DNA methylation levels of differentially methylated regions (DMRs) of seven imprinted genes (H19, MEG3, LIT1, MEST, NESP55, PEG3 and SNRPN) as well as the promoter regions of the pluripotency gene NANOG and the tumor suppressor gene APC in chorionic villus samples (CVS) of 42 spontaneous miscarriages and stillbirths after ART and 29 abortions/stillbirths after spontaneous conception. We did not find an increased rate of faulty methylation patterns after ART, but significant and trend differences (ROC curve analysis, Wilcoxon test) in the methylation levels of LIT1 (P = 0.006) and H19 (P = 0.085) between ART and non-ART samples. With the possible exception of NANOG, we did not observe a gestational age effect on the methylation levels of the studied genes. The frequency of extreme methylation values in PEG3 and APC was markedly higher than in the other studied genes, indicating an increased susceptibility of some genes to epigenetic alterations. Most methylation abnormalities in CVS represented either hypermethylated DMRs of paternally and maternally imprinted genes or hypomethylated promoters of non-imprinted genes. The observed methylation abnormalities (mosaicism) are consistent with methylation reprogramming defects during early embryogenesis.


Assuntos
Aborto Espontâneo/genética , Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Mosaicismo , Técnicas de Reprodução Assistida/efeitos adversos , Natimorto/genética , Adulto , Feminino , Genes APC , Predisposição Genética para Doença , Alemanha , Idade Gestacional , Humanos , Israel , Fatores de Transcrição Kruppel-Like/genética , Modelos Lineares , Idade Materna , Pessoa de Meia-Idade , Fenótipo , Gravidez , Medição de Risco , Fatores de Risco , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA