Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Open Biol ; 13(9): 230122, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37726093

RESUMO

KIF20A is a critical kinesin for cell division and a promising anti-cancer drug target. The mechanisms underlying its cellular roles remain elusive. Interestingly, unusual coupling between the nucleotide- and microtubule-binding sites of this kinesin-6 has been reported, but little is known about how its divergent sequence leads to atypical motility properties. We present here the first high-resolution structure of its motor domain that delineates the highly unusual structural features of this motor, including a long L6 insertion that integrates into the core of the motor domain and that drastically affects allostery and ATPase activity. Together with the high-resolution cryo-electron microscopy microtubule-bound KIF20A structure that reveals the microtubule-binding interface, we dissect the peculiarities of the KIF20A sequence that influence its mechanochemistry, leading to low motility compared to other kinesins. Structural and functional insights from the KIF20A pre-power stroke conformation highlight the role of extended insertions in shaping the motor's mechanochemical cycle. Essential for force production and processivity is the length of the neck linker in kinesins. We highlight here the role of the sequence preceding the neck linker in controlling its backward docking and show that a neck linker four times longer than that in kinesin-1 is required for the activity of this motor.


Assuntos
Cinesinas , Microtúbulos , Microscopia Crioeletrônica , Cinesinas/genética , Sítios de Ligação , Divisão Celular
2.
Methods Mol Biol ; 2507: 1-18, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35773574

RESUMO

Transmembrane proteins (or integral membrane proteins) are synthesized in the endoplasmic reticulum where most of them are core glycosylated prior to folding and in some cases assembly into quaternary structures. Correctly glycosylated, folded, and assembled transmembrane proteins are then shuttled to the Golgi apparatus for additional posttranslational modifications such as complex-type glycosylations, sulfation or proteolytic clipping. At the plasma membrane, the glycosylated extracellular domains are key to communicate with the cellular environment for a variety of functions, such as binding to the extracellular matrix for cell adhesion and migration, to neighboring cells for cell-cell interaction, or to extracellular components for nutrient uptake and cell signaling. Intracellular domains are essential to mediate signaling cascades, or to connect to cytosolic adaptors for internalization and intracellular compartmentalization. Despite its importance for the understanding of molecular mechanisms of transmembrane protein function, the determination of their structures has remained a challenging task. In recent years, their reconstitution in lipid nanodiscs in combination with high resolution cryo-electron microscopy has provided novel avenues to render this process more accessible. Here, we describe detailed protocols for the solubilization of heavily glycosylated α5ß1 integrin from rat livers, its purification and reconstitution into nanodiscs. At the plasma membrane of many cells, including tumor metastases, this essential heterodimeric transmembrane protein mediates the communication between extracellular matrix and cytosolic cytoskeleton in processes of cell adhesion and migration. We expect that the protocols that are described here will provide new opportunities for the determination of the full structure of α5ß1 integrin, as well as for the understanding of how interacting partners can regulate function and activity of this transmembrane protein.


Assuntos
Comunicação Celular , Integrinas , Animais , Adesão Celular/fisiologia , Comunicação Celular/fisiologia , Microscopia Crioeletrônica , Fígado , Ratos
3.
Angew Chem Int Ed Engl ; 61(32): e202205231, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35612562

RESUMO

Interferons (IFN) are cytokines which, upon binding to cell surface receptors, trigger a series of downstream biochemical events including Janus Kinase (JAK) activation, phosphorylation of Signal Transducer and Activator of Transcription protein (STAT), translocation of pSTAT to the nucleus and transcriptional activation. Dysregulated IFN signalling has been linked to cancer progression and auto-immune diseases. Here, we report the serendipitous discovery of a small molecule that blocks IFNγ activation of JAK-STAT signalling. Further lead optimisation gave rise to a potent and more selective analogue that exerts its activity by a mechanism consistent with direct IFNγ targeting in vitro, which reduces bleeding in model of haemorrhagic colitis in vivo. This first-in-class small molecule also inhibits type I and III IFN-induced STAT phosphorylation in vitro. Our work provides the basis for the development of pan-IFN inhibitory drugs.


Assuntos
Interferons , Janus Quinases , Interferon gama , Interferons/metabolismo , Interferons/farmacologia , Fosforilação , Transdução de Sinais
4.
J Natl Cancer Inst ; 113(1): 80-87, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32239153

RESUMO

BACKGROUND: Uveal melanoma (UM) arises from malignant transformation of melanocytes in the uveal tract of the eye. This rare tumor has a poor outcome with frequent chemo-resistant liver metastases. BAP1 is the only known predisposing gene for UM. UMs are generally characterized by low tumor mutation burden, but some UMs display a high level of CpG>TpG mutations associated with MBD4 inactivation. Here, we explored the incidence of germline MBD4 variants in a consecutive series of 1093 primary UM case patients and a series of 192 UM tumors with monosomy 3 (M3). METHODS: We performed MBD4 targeted sequencing on pooled germline (n = 1093) and tumor (n = 192) DNA samples of UM patients. MBD4 variants (n = 28) were validated by Sanger sequencing. We performed whole-exome sequencing on available tumor samples harboring MBD4 variants (n = 9). Variants of unknown pathogenicity were further functionally assessed. RESULTS: We identified 8 deleterious MBD4 mutations in the consecutive UM series, a 9.15-fold (95% confidence interval = 4.24-fold to 19.73-fold) increased incidence compared with the general population (Fisher exact test, P = 2.00 × 10-5, 2-sided), and 4 additional deleterious MBD4 mutations in the M3 cohort, including 3 germline and 1 somatic mutations. Tumors carrying deleterious MBD4 mutations were all associated with high tumor mutation burden and a CpG>TpG hypermutator phenotype. CONCLUSIONS: We demonstrate that MBD4 is a new predisposing gene for UM associated with hypermutated M3 tumors. The tumor spectrum of this predisposing condition will likely expand with the addition of MBD4 to diagnostic panels. Tumors arising in such a context should be recognized because they may respond to immunotherapy.


Assuntos
Endodesoxirribonucleases/genética , Predisposição Genética para Doença , Melanoma/genética , Neoplasias Uveais/genética , Idoso , Feminino , Genótipo , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Melanoma/patologia , Pessoa de Meia-Idade , Fenótipo , Carga Tumoral/genética , Neoplasias Uveais/patologia , Sequenciamento do Exoma
5.
Nat Commun ; 11(1): 1819, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286328

RESUMO

The BRCA2 tumor suppressor protein is involved in the maintenance of genome integrity through its role in homologous recombination. In mitosis, BRCA2 is phosphorylated by Polo-like kinase 1 (PLK1). Here we describe how this phosphorylation contributes to the control of mitosis. We identify a conserved phosphorylation site at T207 of BRCA2 that constitutes a bona fide docking site for PLK1 and is phosphorylated in mitotic cells. We show that BRCA2 bound to PLK1 forms a complex with the phosphatase PP2A and phosphorylated-BUBR1. Reducing BRCA2 binding to PLK1, as observed in BRCA2 breast cancer variants S206C and T207A, alters the tetrameric complex resulting in unstable kinetochore-microtubule interactions, misaligned chromosomes, faulty chromosome segregation and aneuploidy. We thus reveal a role of BRCA2 in the alignment of chromosomes, distinct from its DNA repair function, with important consequences on chromosome stability. These findings may explain in part the aneuploidy observed in BRCA2-mutated tumors.


Assuntos
Proteína BRCA2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromossomos Humanos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Aneuploidia , Neoplasias da Mama/genética , Segregação de Cromossomos , Feminino , Variação Genética , Células HeLa , Recombinação Homóloga , Humanos , Cinética , Cinetocoros , Mitose , Simulação de Acoplamento Molecular , Fosforilação , Fosfosserina/metabolismo , Fosfotreonina/metabolismo , Ligação Proteica , Proteína Fosfatase 2/metabolismo , Quinase 1 Polo-Like
6.
Elife ; 72018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30320548

RESUMO

The two Ral GTPases, RalA and RalB, have crucial roles downstream Ras oncoproteins in human cancers; in particular, RalB is involved in invasion and metastasis. However, therapies targeting Ral signalling are not available yet. By a novel optogenetic approach, we found that light-controlled activation of Ral at plasma-membrane promotes the recruitment of the Wave Regulatory Complex (WRC) via its effector exocyst, with consequent induction of protrusions and invasion. We show that active Ras signals to RalB via two RalGEFs (Guanine nucleotide Exchange Factors), RGL1 and RGL2, to foster invasiveness; RalB contribution appears to be more important than that of MAPK and PI3K pathways. Moreover, on the clinical side, we uncovered a potential role of RalB in human breast cancers by determining that RalB expression at protein level increases in a manner consistent with progression toward metastasis. This work highlights the Ras-RGL1/2-RalB-exocyst-WRC axis as appealing target for novel anticancer strategies.


Assuntos
Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Extensões da Superfície Celular/metabolismo , Extensões da Superfície Celular/efeitos da radiação , Progressão da Doença , Feminino , Humanos , Luz , Invasividade Neoplásica , Optogenética , Transdução de Sinais
7.
Arch Biochem Biophys ; 587: 38-47, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26476343

RESUMO

Cadherin-mediated adhesion plays a crucial role in multicellular organisms. Dysfunction within this adhesion system has major consequences in many pathologies, including cancer invasion and metastasis. However, mechanisms controlling cadherin recognition and adhesive strengthening are only partially understood. Here, we investigated the homophilic interactions and mechanical stability of the extracellular (EC) domains of E-cadherin and cadherin 7 using atomic force microscopy and magnetic tweezers. Besides exhibiting stronger interactions, E-cadherin also showed more efficient force-induced self-strengthening of interactions than cadherin 7. In addition, the distributions of the unbinding forces for both cadherins partially overlap with those of the unfolding forces, indicating that partial unfolding/deformation of the cadherin EC domains may take place during their homophilic interactions. These conformational changes may be involved in cadherins physiology function and contribute to the significant differences in adhesive strength mediated by type I and type II cadherins.


Assuntos
Caderinas/metabolismo , Microscopia de Força Atômica , Caderinas/química , Adesão Celular , Magnetismo , Fenômenos Mecânicos , Ligação Proteica , Estrutura Terciária de Proteína , Desdobramento de Proteína
8.
J Biotechnol ; 158(3): 97-103, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22300512

RESUMO

The tobacco etch virus (TEV) protease is a useful tool for the removal of fusion tags from recombinant proteins. The difficulty in obtaining this enzyme led us to look for an optimal method for its use. In this work, we produced both the wild-type and the S219V mutant TEV proteases fused to the Streptag II affinity sequence (Streptag II-TEV(WT), and Streptag II-TEV(S219V), respectively). The two enzymes were affinity immobilized on a streptavidin-agarose matrix and compared to their respective free forms. Both immobilized Streptag II-TEV(WT) and Streptag II-TEV(S219V) were active on the 74-kDa Streptag II substrate with a retained activity of 83.5% and 81%, respectively compared to their free corresponding forms. The slight enzyme activity decrease caused by the immobilization was balanced by the enhanced stability and the successful repetitive use of the proteolytic columns. Thus, the wild-type and the mutant immobilized proteases were used, during a period of 18 months, for nine batch reactions with retention of 38% and 51% of their initial activities, respectively. The present results demonstrate that immobilized TEV protease on streptavidin-agarose is an attractive and efficient tool for fusion protein cleavage, especially when the target protein is fused to a streptagged fusion partner. Using this strategy, the total process can be shortened by performing the cleavage and the recovery of the purified target protein in one step.


Assuntos
Endopeptidases/química , Enzimas Imobilizadas/química , Vírus de Plantas/enzimologia , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Virais/química , Endopeptidases/biossíntese , Endopeptidases/genética , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Vírus de Plantas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Estreptavidina/química , Estreptavidina/genética , Estreptavidina/metabolismo , Proteínas Virais/biossíntese , Proteínas Virais/genética
9.
Protein Expr Purif ; 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21889987

RESUMO

The Tobacco Etch Virus (TEV) protease is frequently used in the cleavage of recombinant fusion proteins because of its efficiency and high specificity. In this work, we present a new recombinant form of TEV termed Streptag II-TEV for high-level production and purification of TEV protease from Escherichia coli and compare it to the hexahistidine (6xHis) tagged version of TEV. The effects of varying the host strain, the bacterial induction temperature (25, 30 and 37°C) and the IPTG inducer concentration on production and solubility of the two recombinant TEV proteases have been examined. Optimal Streptag II-TEV protein expression were obtained in the E. coli KRX strain under an induction temperature of 25°C in the presence of IPTG at 0.5mM. In these conditions, soluble Streptag II-TEV and 6xHis-TEV proteases accounted for about 25% and 18% of total soluble proteins, respectively. About 70% of Streptag II-TEV and 60% of 6xHis-TEV were detected in the supernatant. Streptag II-TEV protease purifies to near homogeneity (approximately 99%) via a simple, single step Strep-Tactin chromatography purification protocol based on the presence of Streptag II. The higher production of Streptag II-TEV coupled to its purification and cleavage efficiencies make it an attractive alternate to 6xHis-TEV.

10.
Protein Expr Purif ; 75(1): 75-82, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20817099

RESUMO

The Tobacco Etch Virus (TEV) protease is frequently used in the cleavage of recombinant fusion proteins because of its efficiency and high specificity. In this work, we present a new recombinant form of TEV termed Streptag II-TEV for high-level production and purification of TEV protease from Escherichia coli and compare it to the hexahistidine (6xHis) tagged version of TEV. The effects of varying the host strain, the bacterial induction temperature (25, 30 and 37°C) and the IPTG inducer concentration on production and solubility of the two recombinant TEV proteases have been examined. Optimal Streptag II-TEV protein expression were obtained in the E. coli KRX strain under an induction temperature of 25°C in the presence of IPTG at 0.5 mM. In these conditions, soluble Streptag II-TEV and 6xHis-TEV proteases accounted for about 25% and 18% of total soluble proteins, respectively. About 70% of Streptag II-TEV and 60% of 6xHis-TEV were detected in the supernatant. Streptag II-TEV protease purifies to near homogeneity (approximately 99%) via a simple, single step Strep-Tactin chromatography purification protocol based on the presence of Streptag II. The higher production of Streptag II-TEV coupled to its purification and cleavage efficiencies make it an attractive alternate to 6xHis-TEV.


Assuntos
Clonagem Molecular , Endopeptidases/genética , Escherichia coli/genética , Histidina/genética , Oligopeptídeos/genética , Vírus de Plantas/enzimologia , Proteínas Virais/genética , Sequência de Bases , Endopeptidases/isolamento & purificação , Endopeptidases/metabolismo , Expressão Gênica , Vetores Genéticos/genética , Dados de Sequência Molecular , Vírus de Plantas/genética , Plasmídeos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Nicotiana/virologia , Proteínas Virais/isolamento & purificação , Proteínas Virais/metabolismo
11.
J Biol Chem ; 279(39): 41168-78, 2004 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-15262990

RESUMO

We recently have identified a new cytoplasmic linker protein (CLIP), CLIPR-59, which is involved in the regulation of early endosome/trans-Golgi network dynamics. In contrast with CLIP-170, CLIPR-59 is not localized to microtubules at steady state but is associated with the trans-Golgi network and the plasma membrane. Here we show that the last 30 amino acids (C30) are sufficient for membrane targeting and that two cysteines in the C30 domain are palmitoylated. We demonstrate that CLIPR-59 is associated with lipid rafts via its C-terminal palmitoylated domain. In vitro experiments suggest that CLIPR-59 and its microtubule-binding domain alone have a better affinity for unpolymerized tubulin or small oligomers than for microtubules. In contrast with the CLIP-170 microtubule-binding domain, the CLIPR-59 microtubule-binding domain diminishes microtubule regrowth after nocodazole washout in vivo, showing that this domain can prevent microtubule polymerization. In contrast with the role of linker between membranes and microtubules that was proposed for CLIP function, CLIPR-59 thus may have an "anti-CLIP" function by preventing microtubule-raft interactions.


Assuntos
Citoesqueleto/química , Glicina/química , Complexo de Golgi/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/química , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Western Blotting , Membrana Celular/metabolismo , Células Cultivadas , Cisteína/química , Detergentes/farmacologia , Relação Dose-Resposta a Droga , Proteínas de Fluorescência Verde , Células HeLa , Humanos , Proteínas Luminescentes/metabolismo , Microdomínios da Membrana , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/biossíntese , Microtúbulos/metabolismo , Dados de Sequência Molecular , Mutação , Nocodazol/farmacologia , Ácido Palmítico/química , Plasmídeos/metabolismo , Mutação Puntual , Estrutura Terciária de Proteína , Frações Subcelulares/metabolismo , Transfecção
12.
Lab Invest ; 83(9): 1333-41, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-13679441

RESUMO

Members of the epidermal growth factor (EGF) family and their receptors are involved in many cellular processes, including proliferation, migration, and differentiation. We have previously reported that these growth factors are expressed and have specific regulatory functions in an organ-like culture model of normal human urothelial cells. Here, we used this model to investigate the involvement of EGF receptor (EGFR) in human urothelial regeneration. Three 4-mm-diameter damaged areas were made in confluent normal human urothelial cell cultures with a biopsy punch. Regeneration was measured, on fixed stained cultures, with an image analyzer, at 4, 24, and 48 hours after injury. Cell proliferation was assessed by 5-bromo-2-deoxyuridine incorporation. To identify EGF family factors potentially involved in the healing process, we studied the effect of these factors on damaged confluent cultures and the level of expression of mRNAs extracted from these cultures. EGFR inhibition of the proliferation and migration of urothelial cells was tested with (1). a specific tyrosine kinase inhibitor (AG1478) and (2). a blocking anti-EGFR antibody (LA22). Exogenously added amphiregulin, EGF, transforming growth factor-alpha and heparin-binding EGF (HB-EGF) stimulated urothelial regeneration. The damaged areas were repaired by regrowth within 48 hours. Both AG1478 and LA22 inhibited the repair (by 50% and 30%, respectively), as well as proliferation and migration. This regeneration was accompanied by increased HB-EGF mRNA expression in cultures of cells from four of six subjects, but no corresponding change in EGFR protein level was observed. These results indicate that the EGFR signaling pathway is involved in urothelial regeneration. Our data support an autocrine role of HB-EGF in this process and suggest that the EGFR pathway is a potential therapeutic target for modulating urothelial cell proliferation.


Assuntos
Receptores ErbB/metabolismo , Regeneração/fisiologia , Urotélio/metabolismo , Anfirregulina , Anticorpos Bloqueadores/farmacologia , Western Blotting , Bromodesoxiuridina/metabolismo , Divisão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Primers do DNA/química , Família de Proteínas EGF , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/genética , Receptores ErbB/imunologia , Glicoproteínas/farmacologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Quinazolinas , RNA Mensageiro/metabolismo , Regeneração/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Fator de Crescimento Transformador alfa/farmacologia , Tirfostinas/farmacologia , Urotélio/efeitos dos fármacos , Urotélio/patologia , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA