Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 108(6): 2162-2172, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30684541

RESUMO

Excessive fluid intake, that is, hyperhydration, may be adopted by athletes as a masking method during antidoping sample collection to influence the excretion patterns of doping agents and, therefore, manipulate their detection. The aim of this exploratory study was to assess the hyperhydration effect on the detection sensitivity of recombinant human erythropoietin (rHuEPO) by sodium N-lauroyl sarcosinate ("sarkosyl") polyacrylamide gel electrophoresis analysis. The influence of hyperhydration on the serum and urinary pharmacokinetic (PK) profiles of rHuEPO was also investigated. Seven healthy physically active nonsmoking Caucasian males participated in a 31-day clinical study comprising a baseline (days 0, 1-3, and 8-10) and a drug phase (days 15-17, 22-24, and 29-31). Epoetin beta was administered subcutaneously at a single dose of 3000 IU on days 15, 22, and 29. Hyperhydration was applied in the morning on 3 consecutive days (days 1-3, 8-10, 22-24, and 29-31), that is, 0, 24, and 48 h after first fluid ingestion. Water and a commercial sports drink were used as hyperhydration agents (20 mL/kg body weight). Serum and urinary concentration-time profiles were best described by a one-compartment PK model with zero-order absorption. Delayed absorption was observed after hyperhydration and, therefore, lag time was introduced in the PK model. Results showed no significant difference (p > 0.05) on serum or urinary erythropoietin concentrations under hyperhydration conditions. A trend for decreasing volume of distribution and increasing clearance after hyperhydration was observed, mainly after sports drink consumption. However, no significant differences (p > 0.05) due to hyperhydration for any of the serum PK parameters calculated by noncompartmental PK analysis were observed. Renal excretion of endogenous erythropoietin and rHuEPO, as reflected on the urinary cumulative amount, was increased approximately twice after hyperhydration and this supports the nonsignificant difference on the urinary concentrations. Analysis of serum and urine samples was able to detect rHuEPO up to 72 h after drug administration. The detection window of rHuEPO remained unaffected after water or sports drink ingestion. Hyperhydration had no effect on the detection sensitivity of EPO either in serum or urine samples.


Assuntos
Dopagem Esportivo/prevenção & controle , Eletroforese em Gel de Poliacrilamida/métodos , Eritropoetina/análise , Hematínicos/análise , Estado de Hidratação do Organismo/fisiologia , Resinas Acrílicas/química , Adulto , Eritropoetina/administração & dosagem , Eritropoetina/farmacocinética , Estudos de Viabilidade , Hematínicos/administração & dosagem , Hematínicos/farmacocinética , Humanos , Injeções Subcutâneas , Masculino , Modelos Biológicos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/análise , Proteínas Recombinantes/farmacocinética , Eliminação Renal/fisiologia , Reprodutibilidade dos Testes , Sarcosina/análogos & derivados , Sarcosina/química , Sensibilidade e Especificidade
2.
Int J Sport Nutr Exerc Metab ; 29(4): 388­396, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30507256

RESUMO

Low urinary luteinizing hormone (LH) values have been discussed as a marker to detect steroid abuse. However, suppressed LH concentrations related to highly diluted urine samples could be a misleading indication of anabolic steroid abuse. One aim of the present study was to examine the effect of hyperhydration on the interpretation of LH findings during doping control analysis and to investigate different possibilities to correct volume-related changes in urinary LH concentrations. Seven healthy, physically active, nonsmoking White males were examined for a 72-hr period, using water and a commercial sports drink as hyperhydration agents (20 ml/kg body weight). Urine samples were collected and analyzed according to the World Anti-Doping Agency's technical documents. Baseline urinary LH concentrations, expressed as the mean ± SD for each individual, were within the acceptable physiological range (7.11 ± 5.42 IU/L). A comparison of the measured LH values for both hyperhydration phases (Phase A: 4.24 ± 5.60 IU/L and Phase B: 4.74 ± 4.72 IU/L) with the baseline ("normal") values showed significant differences (Phase A: p < .001 and Phase B: p < .001), suggesting the clear effect of urine dilution due to hyperhydration. However, an adjustment of urinary LH concentrations by specific gravity based on a reference value of 1.020 seems to adequately correct the hyperhydration-induced decrease on the LH levels.


Assuntos
Dopagem Esportivo , Hormônio Luteinizante/urina , Estado de Hidratação do Organismo , Adulto , Atletas , Água Potável/administração & dosagem , Humanos , Masculino , Pessoa de Meia-Idade , Gravidade Específica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA