Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 10(1): 166, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31196173

RESUMO

BACKGROUND: Cell reprogramming is a promising avenue for cell-based therapies as it allows for the generation of multipotent, unipotent, or mature somatic cells without going through a pluripotent state. While the use of autologous cells is considered ideal, key challenges for their clinical translation include the ability to reproducibly generate sufficient quantities of cells within a therapeutically relevant time window. METHODS: We performed transfection of three distinct human somatic starting populations of cells with a non-integrating synthetic plasmid expressing Musashi 1 (MSI1), Neurogenin 2 (NGN2), and Methyl-CpG-Binding Domain 2 (MBD2). The resulting directly reprogrammed neural precursor cells (drNPCs) were examined in vitro using RT-qPCR, karyotype analysis, immunohistochemistry, and FACS at early and late time post-transfection. Electrophysiology (patch clamp) was performed on drNPC-derived neurons to determine their capacity to generate action potentials. In vivo characterization was performed following transplantation of drNPCs into two animal models (Shiverer and SCID/Beige mice), and the numbers, location, and differentiation profile of the transplanted cells were examined using immunohistochemistry. RESULTS: Human somatic cells can be directly reprogrammed within two weeks to neural precursor cells (drNPCs) by transient exposure to Msi1, Ngn2, and MBD2 using non-viral constructs. The drNPCs generate all three neural cell types (astrocytes, oligodendrocytes, and neurons) and can be passaged in vitro to generate large numbers of cells within four weeks. drNPCs can respond to in vivo differentiation and migration cues as demonstrated by their migration to the olfactory bulb and contribution to neurogenesis in vivo. Differentiation profiles of transplanted cells onto the corpus callosum of myelin-deficient mice reveal the production of oligodendrocytes and astrocytes. CONCLUSIONS: Human drNPCs can be efficiently and rapidly produced from donor somatic cells and possess all the important characteristics of native neural multipotent cells including differentiation into neurons, astrocytes, and oligodendrocytes, and in vivo neurogenesis and myelination.


Assuntos
Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Eletrofisiologia , Citometria de Fluxo , Humanos , Cariótipo , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Neurogênese/genética , Neurogênese/fisiologia , Neurônios/citologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Remielinização/genética , Remielinização/fisiologia
2.
Biomaterials ; 32(1): 295-305, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20864158

RESUMO

Gene therapy for hemophilia B and other hereditary plasma protein deficiencies showed great promise in pre-clinical and early clinical trials. However, safety concerns about in vivo delivery of viral vectors and poor post-transplant survival of ex vivo modified cells remain key hurdles for clinical translation of gene therapy. We here describe a 3D scaffold system based on porous hydroxyapatite-PLGA composites coated with biomineralized collagen 1. When combined with autologous gene-engineered factor IX (hFIX) positive mesenchymal stem cells (MSCs) and implanted in hemophilic mice, these scaffolds supported long-term engraftment and systemic protein delivery by MSCs in vivo. Optimization of the scaffolds at the macro-, micro- and nanoscales provided efficient cell delivery capacity, MSC self-renewal and osteogenesis respectively, concurrent with sustained delivery of hFIX. In conclusion, the use of gene-enhanced MSC-seeded scaffolds may be of practical use for treatment of hemophilia B and other plasma protein deficiencies.


Assuntos
Terapia Genética/métodos , Hemofilia B/terapia , Células-Tronco Mesenquimais/metabolismo , Alicerces Teciduais/química , Animais , Fosfatos de Cálcio/farmacologia , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cerâmica/farmacologia , Fator IX/genética , Fator IX/uso terapêutico , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/ultraestrutura , Camundongos , Nanopartículas/ultraestrutura , Tamanho da Partícula , Porosidade/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA