Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Cancers (Basel) ; 15(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958390

RESUMO

Breast cancer stands out as the most frequently identified malignancy, ranking as the fifth leading cause of global cancer-related deaths. The American College of Radiology (ACR) introduced the Breast Imaging Reporting and Data System (BI-RADS) as a standard terminology facilitating communication between radiologists and clinicians; however, an update is now imperative to encompass the latest imaging modalities developed subsequent to the 5th edition of BI-RADS. Within this review article, we provide a concise history of BI-RADS, delve into advanced mammography techniques, ultrasonography (US), magnetic resonance imaging (MRI), PET/CT images, and microwave breast imaging, and subsequently furnish comprehensive, updated insights into Molecular Breast Imaging (MBI), diagnostic imaging biomarkers, and the assessment of treatment responses. This endeavor aims to enhance radiologists' proficiency in catering to the personalized needs of breast cancer patients. Lastly, we explore the augmented benefits of artificial intelligence (AI), machine learning (ML), and deep learning (DL) applications in segmenting, detecting, and diagnosing breast cancer, as well as the early prediction of the response of tumors to neoadjuvant chemotherapy (NAC). By assimilating state-of-the-art computer algorithms capable of deciphering intricate imaging data and aiding radiologists in rendering precise and effective diagnoses, AI has profoundly revolutionized the landscape of breast cancer radiology. Its vast potential holds the promise of bolstering radiologists' capabilities and ameliorating patient outcomes in the realm of breast cancer management.

2.
Cancers (Basel) ; 15(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37958461

RESUMO

Breast cancer retains its position as the most prevalent form of malignancy among females on a global scale. The careful selection of appropriate treatment for each patient holds paramount importance in effectively managing breast cancer. Neoadjuvant chemotherapy (NACT) plays a pivotal role in the comprehensive treatment of this disease. Administering chemotherapy before surgery, NACT becomes a powerful tool in reducing tumor size, potentially enabling fewer invasive surgical procedures and even rendering initially inoperable tumors amenable to surgery. However, a significant challenge lies in the varying responses exhibited by different patients towards NACT. To address this challenge, researchers have focused on developing prediction models that can identify those who would benefit from NACT and those who would not. Such models have the potential to reduce treatment costs and contribute to a more efficient and accurate management of breast cancer. Therefore, this review has two objectives: first, to identify the most effective radiomic markers correlated with NACT response, and second, to explore whether integrating radiomic markers extracted from radiological images with pathological markers can enhance the predictive accuracy of NACT response. This review will delve into addressing these research questions and also shed light on the emerging research direction of leveraging artificial intelligence techniques for predicting NACT response, thereby shaping the future landscape of breast cancer treatment.

3.
Comput Methods Programs Biomed ; 240: 107692, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37459773

RESUMO

BACKGROUND AND OBJECTIVE: Lung cancer is an important cause of death and morbidity around the world. Two of the primary computed tomography (CT) imaging markers that can be used to differentiate malignant and benign lung nodules are the inhomogeneity of the nodules' texture and nodular morphology. The objective of this paper is to present a new model that can capture the inhomogeneity of the detected lung nodules as well as their morphology. METHODS: We modified the local ternary pattern to use three different levels (instead of two) and a new pattern identification algorithm to capture the nodule's inhomogeneity and morphology in a more accurate and flexible way. This modification aims to address the wide Hounsfield unit value range of the detected nodules which decreases the ability of the traditional local binary/ternary pattern to accurately classify nodules' inhomogeneity. The cut-off values defining these three levels of the novel technique are estimated empirically from the training data. Subsequently, the extracted imaging markers are fed to a hyper-tuned stacked generalization-based classification architecture to classify the nodules as malignant or benign. The proposed system was evaluated on in vivo datasets of 679 CT scans (364 malignant nodules and 315 benign nodules) from the benchmark Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) and an external dataset of 100 CT scans (50 malignant and 50 benign). The performance of the classifier was quantitatively assessed using a Leave-one-out cross-validation approach and externally validated using the unseen external dataset based on sensitivity, specificity, and accuracy. RESULTS: The overall accuracy of the system is 96.17% with 97.14% sensitivity and 95.33% specificity. The area under the receiver-operating characteristic curve was 0.98, which highlights the robustness of the system. Using the unseen external dataset for validating the system led to consistent results showing the generalization abilities of the proposed approach. Moreover, applying the original local binary/ternary pattern or using other classification structures achieved inferior performance when compared against the proposed approach. CONCLUSIONS: These experimental results demonstrate the feasibility of the proposed model as a novel tool to assist physicians and radiologists for lung nodules' early assessment based on the new comprehensive imaging markers.


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Humanos , Neoplasias Pulmonares/diagnóstico , Pulmão/patologia , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Curva ROC , Nódulo Pulmonar Solitário/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador
4.
Asian Pac J Cancer Prev ; 24(6): 2187-2193, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37378951

RESUMO

BACKGROUND: Hepatitis C virus (HCV) is a worldwide' health problem as Egypt has a very high prevalence (14.7%) that may affect the B-Lymphocytes, and in some cases leading to an expansion of monoclonal B-cell detected by immunoglobulin heavy chain (IgH) gene rearrangement. Therefore, we aimed to assess the occurrence of IgH gene rearrangement in Egyptian chronic HCV patients and studying the effect of oral direct-acting antiviral (DAAs) therapy on regression of the clonality markers. METHODS: 78 Egyptian patients with chronic HCV infection were included in this study and polymerase chain reaction (PCR) analysis was used to detect IgH rearrangement based on standardized PCR protocols of the BIOMED-2 international guidelines study. RESULTS: Clonal IgH showed a significant increase of HCV-RNA expression and correlated with increased alanine transaminase (ALT) in all patients, while a significant increase of kappa and lambda free light chain observed only in clonal IgH with lymphoproliferative disorders (LPD) patients. A total of 37.17% (29/78) IgH clonality was detected in all patients (7.69% with LPD and 29.48% without LPD). 37% of these IgH clonality disappeared with HCV eradication after DAAs regimen. CONCLUSIONS: we concluded that different DAAs regimen with or without RBV is safe and effective for the treatment of Egyptian patients, but its effect is partially and not completely in the eradication of IgH clonality. Also, using IgH rearrangement in patients with chronic HCV is helpful as indicator in patients at high risk for prediction of LPD.


Assuntos
Hepatite C Crônica , Hepatite C , Transtornos Linfoproliferativos , Humanos , Hepacivirus/genética , Antivirais/uso terapêutico , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/genética , Linfócitos B , Hepatite C/tratamento farmacológico , Hepatite C/genética
5.
Cancers (Basel) ; 15(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37345172

RESUMO

Globally, renal cancer (RC) is the 10th most common cancer among men and women. The new era of artificial intelligence (AI) and radiomics have allowed the development of AI-based computer-aided diagnostic/prediction (AI-based CAD/CAP) systems, which have shown promise for the diagnosis of RC (i.e., subtyping, grading, and staging) and prediction of clinical outcomes at an early stage. This will absolutely help reduce diagnosis time, enhance diagnostic abilities, reduce invasiveness, and provide guidance for appropriate management procedures to avoid the burden of unresponsive treatment plans. This survey mainly has three primary aims. The first aim is to highlight the most recent technical diagnostic studies developed in the last decade, with their findings and limitations, that have taken the advantages of AI and radiomic markers derived from either computed tomography (CT) or magnetic resonance (MR) images to develop AI-based CAD systems for accurate diagnosis of renal tumors at an early stage. The second aim is to highlight the few studies that have utilized AI and radiomic markers, with their findings and limitations, to predict patients' clinical outcome/treatment response, including possible recurrence after treatment, overall survival, and progression-free survival in patients with renal tumors. The promising findings of the aforementioned studies motivated us to highlight the optimal AI-based radiomic makers that are correlated with the diagnosis of renal tumors and prediction/assessment of patients' clinical outcomes. Finally, we conclude with a discussion and possible future avenues for improving diagnostic and treatment prediction performance.

6.
Diagnostics (Basel) ; 13(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36766591

RESUMO

Wilms' tumor, the most prevalent renal tumor in children, is known for its aggressive prognosis and recurrence. Treatment of Wilms' tumor is multimodal, including surgery, chemotherapy, and occasionally, radiation therapy. Preoperative chemotherapy is used routinely in European studies and in select indications in North American trials. The objective of this study was to build a novel computer-aided prediction system for preoperative chemotherapy response in Wilms' tumors. A total of 63 patients (age range: 6 months-14 years) were included in this study, after receiving their guardians' informed consent. We incorporated contrast-enhanced computed tomography imaging to extract the texture, shape, and functionality-based features from Wilms' tumors before chemotherapy. The proposed system consists of six steps: (i) delineate the tumors' images across the three contrast phases; (ii) characterize the texture of the tumors using first- and second-order textural features; (iii) extract the shape features by applying a parametric spherical harmonics model, sphericity, and elongation; (iv) capture the intensity changes across the contrast phases to describe the tumors' functionality; (v) apply features fusion based on the extracted features; and (vi) determine the final prediction as responsive or non-responsive via a tuned support vector machine classifier. The system achieved an overall accuracy of 95.24%, with 95.65% sensitivity and 94.12% specificity. Using the support vector machine along with the integrated features led to superior results compared with other classification models. This study integrates novel imaging markers with a machine learning classification model to make early predictions about how a Wilms' tumor will respond to preoperative chemotherapy. This can lead to personalized management plans for Wilms' tumors.

7.
Cancers (Basel) ; 14(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36497378

RESUMO

In this work, we introduced an automated diagnostic system for Gleason system grading and grade groups (GG) classification using whole slide images (WSIs) of digitized prostate biopsy specimens (PBSs). Our system first classifies the Gleason pattern (GP) from PBSs and then identifies the Gleason score (GS) and GG. We developed a comprehensive DL-based approach to develop a grading pipeline system for the digitized PBSs and consider GP as a classification problem (not segmentation) compared to current research studies (deals with as a segmentation problem). A multilevel binary classification was implemented to enhance the segmentation accuracy for GP. Also, we created three levels of analysis (pyramidal levels) to extract different types of features. Each level has four shallow binary CNN to classify five GP labels. A majority fusion is applied for each pixel that has a total of 39 labeled images to create the final output for GP. The proposed framework is trained, validated, and tested on 3080 WSIs of PBS. The overall diagnostic accuracy for each CNN is evaluated using several metrics: precision (PR), recall (RE), and accuracy, which are documented by the confusion matrices.The results proved our system's potential for classifying all five GP and, thus, GG. The overall accuracy for the GG is evaluated using two metrics, PR and RE. The grade GG results are between 50% to 92% for RE and 50% to 92% for PR. Also, a comparison between our CNN architecture and the standard CNN (ResNet50) highlights our system's advantage. Finally, our deep-learning system achieved an agreement with the consensus grade groups.

8.
Cancers (Basel) ; 14(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36551606

RESUMO

Hepatocellular carcinoma (HCC) is the most common primary hepatic neoplasm. Thanks to recent advances in computed tomography (CT) and magnetic resonance imaging (MRI), there is potential to improve detection, segmentation, discrimination from HCC mimics, and monitoring of therapeutic response. Radiomics, artificial intelligence (AI), and derived tools have already been applied in other areas of diagnostic imaging with promising results. In this review, we briefly discuss the current clinical applications of radiomics and AI in the detection, segmentation, and management of HCC. Moreover, we investigate their potential to reach a more accurate diagnosis of HCC and to guide proper treatment planning.

9.
J Pathol Inform ; 13: 100093, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268061

RESUMO

Background: Renal cell carcinoma is the most common type of malignant kidney tumor and is responsible for 14,830 deaths per year in the United States. Among the four most common subtypes of renal cell carcinoma, clear cell renal cell carcinoma has the worst prognosis and clear cell papillary renal cell carcinoma appears to have no malignant potential. Distinction between these two subtypes can be difficult due to morphologic overlap on examination of histopathological preparation stained with hematoxylin and eosin. Ancillary techniques, such as immunohistochemistry, can be helpful, but they are not universally available. We propose and evaluate a new deep learning framework for tumor classification tasks to distinguish clear cell renal cell carcinoma from papillary renal cell carcinoma. Methods: Our deep learning framework is composed of three convolutional neural networks. We divided whole-slide kidney images into patches with three different sizes where each network processes a specific patch size. Our framework provides patchwise and pixelwise classification. The histopathological kidney data is composed of 64 image slides that belong to 4 categories: fat, parenchyma, clear cell renal cell carcinoma, and clear cell papillary renal cell carcinoma. The final output of our framework is an image map where each pixel is classified into one class. To maintain consistency, we processed the map with Gauss-Markov random field smoothing. Results: Our framework succeeded in classifying the four classes and showed superior performance compared to well-established state-of-the-art methods (pixel accuracy: 0.89 ResNet18, 0.92 proposed). Conclusions: Deep learning techniques have a significant potential for cancer diagnosis.

10.
Bioengineering (Basel) ; 9(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36290461

RESUMO

Lung cancer is among the most common mortality causes worldwide. This scientific article is a comprehensive review of current knowledge regarding screening, subtyping, imaging, staging, and management of treatment response for lung cancer. The traditional imaging modality for screening and initial lung cancer diagnosis is computed tomography (CT). Recently, a dual-energy CT was proven to enhance the categorization of variable pulmonary lesions. The National Comprehensive Cancer Network (NCCN) recommends usage of fluorodeoxyglucose positron emission tomography (FDG PET) in concert with CT to properly stage lung cancer and to prevent fruitless thoracotomies. Diffusion MR is an alternative to FDG PET/CT that is radiation-free and has a comparable diagnostic performance. For response evaluation after treatment, FDG PET/CT is a potent modality which predicts survival better than CT. Updated knowledge of lung cancer genomic abnormalities and treatment regimens helps to improve the radiologists' skills. Incorporating the radiologic experience is crucial for precise diagnosis, therapy planning, and surveillance of lung cancer.

11.
Bioengineering (Basel) ; 9(10)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36290500

RESUMO

Gliomas are the most common type of primary brain tumors and one of the highest causes of mortality worldwide. Accurate grading of gliomas is of immense importance to administer proper treatment plans. In this paper, we develop a comprehensive non-invasive multimodal magnetic resonance (MR)-based computer-aided diagnostic (CAD) system to precisely differentiate between different grades of gliomas (Grades: I, II, III, and IV). A total of 99 patients with gliomas (M = 49, F = 50, age range = 1-79 years) were included after providing their informed consent to participate in this study. The proposed imaging-based glioma grading (GG-CAD) system utilizes three different MR imaging modalities, namely; contrast-enhanced T1-MR, T2-MR known as fluid-attenuated inversion-recovery (FLAIR), and diffusion-weighted (DW-MR) to extract the following imaging features: (i) morphological features based on constructing the histogram of oriented gradients (HOG) and estimating the glioma volume, (ii) first and second orders textural features by constructing histogram, gray-level run length matrix (GLRLM), and gray-level co-occurrence matrix (GLCM), (iii) functional features by estimating voxel-wise apparent diffusion coefficients (ADC) and contrast-enhancement slope. These features are then integrated together and processed using a Gini impurity-based selection approach to find the optimal set of significant features. The reduced significant features are then fed to a multi-layer perceptron artificial neural networks (MLP-ANN) classification model to obtain the final diagnosis of a glioma tumor as Grade I, II, III, or IV. The GG-CAD system was evaluated on the enrolled 99 gliomas (Grade I = 13, Grade II = 22, Grade III = 22, and Grade IV = 42) using a leave-one-subject-out (LOSO) and k-fold stratified (with k = 5 and 10) cross-validation approach. The GG-CAD achieved 0.96 ± 0.02 quadratic-weighted Cohen's kappa and 95.8% ± 1.9% overall diagnostic accuracy at LOSO and an outstanding diagnostic performance at k = 10 and 5. Alternative classifiers, including RFs and SVMlin produced inferior results compared to the proposed MLP-ANN GG-CAD system. These findings demonstrate the feasibility of the proposed CAD system as a novel tool to objectively characterize gliomas using the comprehensive extracted and selected imaging features. The developed GG-CAD system holds promise to be used as a non-invasive diagnostic tool for Precise Grading of Glioma.

12.
Cancers (Basel) ; 14(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36291803

RESUMO

Bladder cancer (BC) is the 10th most common cancer globally and has a high mortality rate if not detected early and treated promptly. Non-muscle-invasive BC (NMIBC) is a subclassification of BC associated with high rates of recurrence and progression. Current tools for predicting recurrence and progression on NMIBC use scoring systems based on clinical and histopathological markers. These exclude other potentially useful biomarkers which could provide a more accurate personalized risk assessment. Future trends are likely to use artificial intelligence (AI) to enhance the prediction of recurrence in patients with NMIBC and decrease the use of standard clinical protocols such as cystoscopy and cytology. Here, we provide a comprehensive survey of the most recent studies from the last decade (N = 70 studies), focused on the prediction of patient outcomes in NMIBC, particularly recurrence, using biomarkers such as radiomics, histopathology, clinical, and genomics. The value of individual and combined biomarkers is discussed in detail with the goal of identifying future trends that will lead to the personalized management of NMIBC.

13.
Bioengineering (Basel) ; 9(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36134972

RESUMO

Kidney cancer has several types, with renal cell carcinoma (RCC) being the most prevalent and severe type, accounting for more than 85% of adult patients. The manual analysis of whole slide images (WSI) of renal tissues is the primary tool for RCC diagnosis and prognosis. However, the manual identification of RCC is time-consuming and prone to inter-subject variability. In this paper, we aim to distinguish between benign tissue and malignant RCC tumors and identify the tumor subtypes to support medical therapy management. We propose a novel multiscale weakly-supervised deep learning approach for RCC subtyping. Our system starts by applying the RGB-histogram specification stain normalization on the whole slide images to eliminate the effect of the color variations on the system performance. Then, we follow the multiple instance learning approach by dividing the input data into multiple overlapping patches to maintain the tissue connectivity. Finally, we train three multiscale convolutional neural networks (CNNs) and apply decision fusion to their predicted results to obtain the final classification decision. Our dataset comprises four classes of renal tissues: non-RCC renal parenchyma, non-RCC fat tissues, clear cell RCC (ccRCC), and clear cell papillary RCC (ccpRCC). The developed system demonstrates a high classification accuracy and sensitivity on the RCC biopsy samples at the slide level. Following a leave-one-subject-out cross-validation approach, the developed RCC subtype classification system achieves an overall classification accuracy of 93.0% ± 4.9%, a sensitivity of 91.3% ± 10.7%, and a high classification specificity of 95.6% ± 5.2%, in distinguishing ccRCC from ccpRCC or non-RCC tissues. Furthermore, our method outperformed the state-of-the-art Resnet-50 model.

14.
Saudi J Biol Sci ; 29(5): 3157-3166, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35844386

RESUMO

Cisplatin is one of the most widely used chemotherapeutic anti-cancer drugs that is associated with multiple systemic toxicities limiting its use. The present study aimed to evaluate the hepato-protective effect of hesperidin against cisplatin-induced toxicity. Thirty-two adult male albino rats were equally split into four groups, the first group served as control received normal saline, the second group (CIS) received a single intraperitoneal dose of cisplatin (7.5 mg/kg bw) on the 22nd day of the experiment, the third group (HES) treated once daily with hesperidin (200 mg/kg bw, orally) for 21 days, and the last group (HES + CIS) pretreated once daily with hesperidin followed by a single intraperitoneal dose of cisplatin. Twenty-four hours later, samples were collected for further investigations. CIS-intoxication resulted in a significant decrease in the erythrogram along with thrombocytopenia leukopenia, and lymphopenia. Furthermore, CIS administration significantly elevated serum activity of liver enzymes, total, and indirect bilirubin as well serum glucose, total cholesterol, and triglycerides levels, meanwhile serum total protein, and globulin levels were significantly reduced. The hepatic MDA was markedly elevated with a concomitant decline in the hepatic antioxidant enzymes and severe alterations in the hepatic tissue architecture in CIS-intoxicated rats. Additionally, CIS-induced overexpression of hepatic Bax, caspase-3, and TNF-α, with no effect on hepatic expression of IL-10. Interestingly, HES pretreatment improved the CIS-induced hemato-biochemical, molecular and histopathological alterations. In conclusion, hesperidin hepato-protective effects against CIS might be mediated by its antioxidant, anti-inflammatory, and anti-apoptotic properties.

15.
Sensors (Basel) ; 22(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35591182

RESUMO

Diabetic retinopathy (DR) is a devastating condition caused by progressive changes in the retinal microvasculature. It is a leading cause of retinal blindness in people with diabetes. Long periods of uncontrolled blood sugar levels result in endothelial damage, leading to macular edema, altered retinal permeability, retinal ischemia, and neovascularization. In order to facilitate rapid screening and diagnosing, as well as grading of DR, different retinal modalities are utilized. Typically, a computer-aided diagnostic system (CAD) uses retinal images to aid the ophthalmologists in the diagnosis process. These CAD systems use a combination of machine learning (ML) models (e.g., deep learning (DL) approaches) to speed up the diagnosis and grading of DR. In this way, this survey provides a comprehensive overview of different imaging modalities used with ML/DL approaches in the DR diagnosis process. The four imaging modalities that we focused on are fluorescein angiography, fundus photographs, optical coherence tomography (OCT), and OCT angiography (OCTA). In addition, we discuss limitations of the literature that utilizes such modalities for DR diagnosis. In addition, we introduce research gaps and provide suggested solutions for the researchers to resolve. Lastly, we provide a thorough discussion about the challenges and future directions of the current state-of-the-art DL/ML approaches. We also elaborate on how integrating different imaging modalities with the clinical information and demographic data will lead to promising results for the scientists when diagnosing and grading DR. As a result of this article's comparative analysis and discussion, it remains necessary to use DL methods over existing ML models to detect DR in multiple modalities.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Edema Macular , Retinopatia Diabética/diagnóstico por imagem , Angiofluoresceinografia/efeitos adversos , Humanos , Retina/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos
16.
Cancers (Basel) ; 14(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35406614

RESUMO

Pulmonary nodules are the precursors of bronchogenic carcinoma, its early detection facilitates early treatment which save a lot of lives. Unfortunately, pulmonary nodule detection and classification are liable to subjective variations with high rate of missing small cancerous lesions which opens the way for implementation of artificial intelligence (AI) and computer aided diagnosis (CAD) systems. The field of deep learning and neural networks is expanding every day with new models designed to overcome diagnostic problems and provide more applicable and simply used models. We aim in this review to briefly discuss the current applications of AI in lung segmentation, pulmonary nodule detection and classification.

17.
Sensors (Basel) ; 22(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35270995

RESUMO

Prostate cancer, which is also known as prostatic adenocarcinoma, is an unconstrained growth of epithelial cells in the prostate and has become one of the leading causes of cancer-related death worldwide. The survival of patients with prostate cancer relies on detection at an early, treatable stage. In this paper, we introduce a new comprehensive framework to precisely differentiate between malignant and benign prostate cancer. This framework proposes a noninvasive computer-aided diagnosis system that integrates two imaging modalities of MR (diffusion-weighted (DW) and T2-weighted (T2W)). For the first time, it utilizes the combination of functional features represented by apparent diffusion coefficient (ADC) maps estimated from DW-MRI for the whole prostate in combination with texture features with its first- and second-order representations, extracted from T2W-MRIs of the whole prostate, and shape features represented by spherical harmonics constructed for the lesion inside the prostate and integrated with PSA screening results. The dataset presented in the paper includes 80 biopsy confirmed patients, with a mean age of 65.7 years (43 benign prostatic hyperplasia, 37 prostatic carcinomas). Experiments were conducted using different well-known machine learning approaches including support vector machines (SVM), random forests (RF), decision trees (DT), and linear discriminant analysis (LDA) classification models to study the impact of different feature sets that lead to better identification of prostatic adenocarcinoma. Using a leave-one-out cross-validation approach, the diagnostic results obtained using the SVM classification model along with the combined feature set after applying feature selection (88.75% accuracy, 81.08% sensitivity, 95.35% specificity, and 0.8821 AUC) indicated that the system's performance, after integrating and reducing different types of feature sets, obtained an enhanced diagnostic performance compared with each individual feature set and other machine learning classifiers. In addition, the developed diagnostic system provided consistent diagnostic performance using 10-fold and 5-fold cross-validation approaches, which confirms the reliability, generalization ability, and robustness of the developed system.


Assuntos
Adenocarcinoma , Neoplasias da Próstata , Adenocarcinoma/diagnóstico por imagem , Idoso , Imagem de Difusão por Ressonância Magnética/métodos , Humanos , Masculino , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Reprodutibilidade dos Testes
18.
Cancers (Basel) ; 14(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35267425

RESUMO

Lung cancer is one of the most dreadful cancers, and its detection in the early stage is very important and challenging. This manuscript proposes a new computer-aided diagnosis system for lung cancer diagnosis from chest computed tomography scans. The proposed system extracts two different kinds of features, namely, appearance features and shape features. For the appearance features, a Histogram of oriented gradients, a Multi-view analytical Local Binary Pattern, and a Markov Gibbs Random Field are developed to give a good description of the lung nodule texture, which is one of the main distinguishing characteristics between benign and malignant nodules. For the shape features, Multi-view Peripheral Sum Curvature Scale Space, Spherical Harmonics Expansion, and a group of some fundamental morphological features are implemented to describe the outer contour complexity of the nodules, which is main factor in lung nodule diagnosis. Each feature is fed into a stacked auto-encoder followed by a soft-max classifier to generate the initial malignancy probability. Finally, all these probabilities are combined together and fed to the last network to give the final diagnosis. The system is validated using 727 nodules which are subset from the Lung Image Database Consortium (LIDC) dataset. The system shows very high performance measures and achieves 92.55%, 91.70%, and 93.40% for the accuracy, sensitivity, and specificity, respectively. This high performance shows the ability of the system to distinguish between the malignant and benign nodules precisely.

19.
Front Biosci (Landmark Ed) ; 27(2): 73, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35227016

RESUMO

Cardiovascular complications (especially myocarditis) related to COVID-19 viral infection are not well understood, nor do they possess a well recognized diagnostic protocol as most of our information regarding this issue was derived from case reports. In this article we extract data from all published case reports in the second half of 2020 to summarize the theories of pathogenesis and explore the value of each diagnostic test including clinical, lab, ECG, ECHO, cardiac MRI and endomyocardial biopsy. These tests provide information that explain the mechanism of development of myocarditis that further paves the way for better management.


Assuntos
COVID-19 , Miocardite , Coração , Humanos , Miocardite/diagnóstico , Miocardite/etiologia , Miocardite/patologia , SARS-CoV-2
20.
Cardiovasc Eng Technol ; 13(1): 170-180, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34402037

RESUMO

PURPOSE: Drug induced cardiac toxicity is a disruption of the functionality of cardiomyocytes which is highly correlated to the organization of the subcellular structures. We can analyze cellular structures by utilizing microscopy imaging data. However, conventional image analysis methods might miss structural deteriorations that are difficult to perceive. Here, we propose an image-based deep learning pipeline for the automated quantification of drug induced structural deteriorations using a 3D heart slice culture model. METHODS: In our deep learning pipeline, we quantify the induced structural deterioration from three anticancer drugs (doxorubicin, sunitinib, and herceptin) with known adverse cardiac effects. The proposed deep learning framework is composed of three convolutional neural networks that process three different image sizes. The results of the three networks are combined to produce a classification map that shows the locations of the structural deteriorations in the input cardiac image. RESULTS: The result of our technique is the capability of producing classification maps that accurately detect drug induced structural deterioration on the pixel level. CONCLUSION: This technology could be widely applied to perform unbiased quantification of the structural effect of the cardiotoxins on heart slices.


Assuntos
Inteligência Artificial , Miócitos Cardíacos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA