Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(11): 16392-16403, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34651266

RESUMO

The production of extra virgin olive oil (EVOO) flavored with diverse spices, herbs, fruits, and vegetables or natural aromas is believed to provide advantageous properties considering either the high nutritional value or biological activity in addition to the flavoring and industrial aspects. The biological activities including antioxidant and antimicrobial properties of Tunisian EVOO obtained from "Chemlali" variety and mixed with chili pepper were investigated. Molecular analyses, including the detection of twelve olive-infecting viruses and Pseudomonas savastanoi pv savastanoi, were performed to ensure that the samples were obtained from healthy olive trees and EVOO quality was not affected. Quality parameters like free acidity, peroxide number, oxidative stability, and specific absorption at K232 nm and K270 nm were also investigated and no significant variation was revealed. The content of minor compounds such as chlorophylls, carotenoids, and total phenols showed minor changes. However, the profiles of the volatile compounds showed remarkable differences, which appeared to be the main factor for the observed variability in consumer acceptance. The results showed for the first time high quantities of polyphenols and ortho-diphenols. Four colorimetric methods were used for the determination of the antioxidant activity, namely DPPH, ABTS, FRAP, and ß-carotene test. Compared to the control, a higher level of antioxidant activity was observed for the flavored EVOO. Furthermore, significant results were obtained in the antimicrobial tests. The quality parameters of the mixture showed no alteration compared to the control. Finally, all the measurements and the chemical characterization gave a scientific basis for food technology innovation of new food products.


Assuntos
Capsicum , Olea , Aromatizantes , Valor Nutritivo , Azeite de Oliva
2.
Molecules ; 26(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200152

RESUMO

Lupin seeds can represent a valuable source of phenolics and other antioxidant compounds. In this work, a comprehensive analysis of the phytochemical profile was performed on seeds from three Lupinus species, including one cultivar (Lupinus albus) and two wild accessions (Lupinus cossentinii and Lupinus luteus), collected from the northern region of Tunisia. Untargeted metabolomic profiling allowed to identify 249 compounds, with a great abundance of phenolics and alkaloids. In this regard, the species L. cossentinii showed the highest phenolic content, being 6.54 mg/g DW, followed by L. luteus (1.60 mg/g DW) and L. albus (1.14 mg/g DW). The in vitro antioxidant capacity measured by the ABTS assay on seed extracts ranged from 4.67 to 17.58 mg trolox equivalents (TE)/g, recording the highest values for L. albus and the lowest for L. luteus. The DPPH radical scavenging activity ranged from 0.39 to 3.50 mg TE/g. FRAP values varied between 4.11 and 5.75 mg TE/g. CUPRAC values for lupin seeds ranged from 7.20 to 8.95 mg TE/g, recording the highest for L. cossentinii. The results of phosphomolybdenum assay and metal chelation showed similarity between the three species of Lupinus. The acetylcholinesterase (AChE) inhibition activity was detected in each methanolic extract analyzed with similar results. Regarding the butyrylcholinesterase (BChE) enzyme, it was weakly inhibited by the Lupinus extracts; in particular, the highest activity values were recorded for L. albus (1.74 mg GALAE/g). Overall, our results showed that L. cossentinii was the most abundant source of polyphenols, consisting mainly in tyrosol equivalents (5.82 mg/g DW). Finally, significant correlations were outlined between the phenolic compounds and the in vitro biological activity measured, particularly when considering flavones, phenolic acids and lower-molecular-weight phenolics.


Assuntos
Antioxidantes/química , Lupinus/química , Compostos Fitoquímicos/química , Sementes/química , Alcaloides/química , Alcaloides/metabolismo , Antioxidantes/metabolismo , Lupinus/metabolismo , Metabolômica/métodos , Fenóis/química , Fenóis/metabolismo , Compostos Fitoquímicos/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Sementes/metabolismo , Tunísia
3.
Molecules ; 25(19)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036316

RESUMO

This investigation included the chemical analysis of Peganum harmala (P. harmala) seed oil and its antifungal properties against 10 fungal species. Seed oils of six populations were analyzed using high performance liquid chromatography (HPLC) and gas chromatograph/mass spectrometry (GC-MS). The HPLC analysis indicated that P. harmala seed oil exhibited a very high level of tocopherol contents, with values in the range of 2385.66-2722.68 mg/100 g. The most abundant tocopherol isomer was δ-tocopherol (90.39%), followed by γ-tocopherol (8.08%) and α-tocopherol (1.14%). We discovered for the first time the presence of tocotrenols in P. harmala seed oils of the six populations studied. The GC-MS analyses revealed that linoleic acid was the main fatty acid (65.17%), followed by oleic acid (23.12%), palmitic acid (5.36%) and stearic acid (3.08%). We also studied the antifungal activity of seed oil of the Medenine (MD) population on ten fungal pathogens. The antifungal effects differed among pathogens and depended on oil concentrations. Seed oil of the MD population caused a significant decrease in mycelial growth of all fungi tested, with values ranging 31.50-82.11%, except for Alternaria sp., which showed no inhibition. The antifungal activity against the 10 selected fungi can be explained by the richness in tocols of the extracted oil and make P. harmala a promising crop for biological control. Furthermore, the importance of fatty acids and the wide geographic spread in Tunisia of this species make this crop a potential source of renewable energy.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Peganum/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Sementes/química , Tocoferóis/química , Tocoferóis/farmacologia , Fungos/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Ácido Linoleico/química , Ácido Linoleico/farmacologia , Ácido Oleico/química , Ácido Oleico/farmacologia , Ácido Palmítico/química , Ácido Palmítico/farmacologia
4.
Cancers (Basel) ; 10(10)2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30261584

RESUMO

The extensive applications of Cynomorium species and their rich bioactive secondary metabolites have inspired many pharmacological investigations. Previous research has been conducted to examine the biological activities and numerous interesting pharmaceutical activities have been reported. However, the antitumor activities of these species are unclear. To understand the potential anticancer activity, we screened Cynomorium coccineum and Cynomorium songaricum using three different extracts of each species. In this study, the selected extracts were evaluated for their ability to decrease survival rates of five different cancer cell lines. We compared the cytotoxicity of the three different extracts to the anticancer drug vinblastine and one of the most well-known medicinal mushrooms Amaurederma rude. We found that the water and alcohol extracts of C. coccineum at the very low concentrations possessed very high capacity in decreasing the cancer cells viability with a potential inhibition of tumorigenesis. Based on these primitive data, we subsequently tested the ethanol and the water extracts of C. coccineum, respectively in in vitro and in vivo assays. Cell cycle progression and induction of programmed cell death were investigated at both biological and molecular levels to understand the mechanism of the antitumor inhibitory action of the C. coccineum. The in vitro experiments showed that the treated cancer cells formed fewer and smaller colonies than the untreated cells. Cell cycle progression was inhibited, and the ethanol extract of C. coccineum at a low concentration induced accumulation of cells in the G1 phase. We also found that the C. coccineum's extracts suppressed viability of two murine cancer cell lines. In the in vivo experiments, we injected mice with murine cancer cell line B16, followed by peritoneal injection of the water extract. The treatment prolonged mouse survival significantly. The tumors grew at a slower rate than the control. Down-regulation of c-myc expression appeared to be associated with these effects. Further investigation showed that treatment with C. coccineum induced the overexpression of the tumor suppressor Foxo3 and other molecules involved in inducing autophagy. These results showed that the C. coccineum extract exerts its antiproliferative activity through the induction of cell death pathway. Thus, the Cynomorium plants appear to be a promising source of new antineoplastic compounds.

5.
Am J Chin Med ; 43(7): 1311-29, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26477798

RESUMO

Medicinal plants have played a major role as a functional food and pharmacological source of active substances. Barley grass (BG) is young green barley leaves. It is the young grass of the common barley plant Hordeum vulgare L. of the family Poeaceae (Graminae). It is a type of green grasses, and the only vegetation on the earth that can supply sole nutritional support from birth to old age. It contains a wide spectrum of vitamins, minerals, as well as eight essential amino acids that we must get from our diets. BG possesses several pharmacological activities as anticancer activity, anti-oxidant activity and anti-inflammatory activity. It has been argued that BG helps blood flow, digestion and general detoxification of the body. The major pharmacologic interest of BG is its use in the treatment of chronic diseases. The beneficial effects observed in chronic disease may be related to bioactive compounds contained in BG such as superoxide dismutase (SOD) and bioflavonoids (lutonarin and saponarin). Thus, this paper is focused on the various studies that emphasize the therapeutic potential of BG in the prevention and treatment of chronic diseases.


Assuntos
Doença Crônica/tratamento farmacológico , Doença Crônica/prevenção & controle , Hordeum/química , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Aminoácidos Essenciais/análise , Aminoácidos Essenciais/isolamento & purificação , Anti-Inflamatórios , Antineoplásicos , Antioxidantes , Flavonoides/análise , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Minerais/análise , Minerais/isolamento & purificação , Folhas de Planta/química , Superóxido Dismutase/análise , Superóxido Dismutase/isolamento & purificação , Superóxido Dismutase/farmacologia , Vitaminas/análise , Vitaminas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA