Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Sci Rep ; 13(1): 4812, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959277

RESUMO

2-Mercaptobenzothiazole (2-MBT) in a solution of 0.5 M HCl is an effective corrosion inhibitor for aluminum and aluminum-titanium alloys. Tafel polarization and electrochemical impedance spectroscopy (EIS) were employed to assess this heterocyclic compound's anticorrosive potential and complementary by scanning electron microscope (SEM) and calculating porosity percentage in the absence and presence of various inhibitor concentrations. Inhibition efficiency (IE%) was strongly related to concentration (10-6-10-3 M). Temperature's effect on corrosion behavior was investigated. The data exhibited that the IE% decreases as the temperature increases. An increase in activation energy (Ea) with increasing the inhibitor concentration and the decrease in the IE% value of the mentioned compound with raising the temperature indicates that the inhibitor molecules are adsorbed physically on the surface. Thermodynamic activation parameters for Al and Al-Ti alloy dissolution in both 0.5 M HCl and the inhibited solution were calculated and discussed. According to Langmuir's adsorption isotherm, the inhibitor molecules were adsorbed. The evaluated standard values of the enthalpy ([Formula: see text], entropy ([Formula: see text] and free energy changes ([Formula: see text] showed that [Formula: see text] and [Formula: see text] are negative, while [Formula: see text] was positive. The formation of a protective layer adsorbed on the surfaces of the substrates was confirmed with the surface analysis (SEM). The porosity percentage is significantly reduced in the inhibitor presence and gradually decreased with increasing concentration. Furthermore, the density functional theory (DFT) and Monte Carlo (MC) simulations were employed to explain the variance in protecting the Al surface from corrosion. Interestingly, the theoretical findings align with their experimental counterparts. The planarity of 2-MBT and the presence of heteroatoms are the playmakers in the adsorption process.

2.
Am J Physiol Heart Circ Physiol ; 322(4): H549-H567, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35089811

RESUMO

We recently reported a mouse model of chronic electronic cigarette (e-cig) exposure-induced cardiovascular pathology, where long-term exposure to e-cig vape (ECV) induces cardiac abnormalities, impairment of endothelial function, and systemic hypertension. Here, we delineate the underlying mechanisms of ECV-induced vascular endothelial dysfunction (VED), a central trigger of cardiovascular disease. C57/BL6 male mice were exposed to ECV generated from e-cig liquid containing 0, 6, or 24 mg/mL nicotine for 16 and 60 wk. Time-dependent elevation in blood pressure and systemic vascular resistance were observed, along with an impairment of acetylcholine-induced aortic relaxation in ECV-exposed mice, compared with air-exposed control. Decreased intravascular nitric oxide (NO) levels and increased superoxide generation with elevated 3-nitrotyrosine levels in the aorta of ECV-exposed mice were observed, indicating that ECV-induced superoxide reacts with NO to generate cytotoxic peroxynitrite. Exposure increased NADPH oxidase expression, supporting its role in ECV-induced superoxide generation. Downregulation of endothelial nitric oxide synthase (eNOS) expression and Akt-dependent eNOS phosphorylation occurred in the aorta of ECV-exposed mice, indicating that exposure inhibited de novo NO synthesis. Following ECV exposure, the critical NOS cofactor tetrahydrobiopterin was decreased, with a concomitant loss of its salvage enzyme, dihydrofolate reductase. NADPH oxidase and NOS inhibitors abrogated ECV-induced superoxide generation in the aorta of ECV-exposed mice. Together, our data demonstrate that ECV exposure activates NADPH oxidase and uncouples eNOS, causing a vicious cycle of superoxide generation and vascular oxidant stress that triggers VED and hypertension with predisposition to other cardiovascular disease.NEW & NOTEWORTHY Underlying mechanisms of e-cig-induced vascular endothelial dysfunction are delineated. e-cig exposure activates and increases expression of NADPH oxidase and disrupts activation and coupling of eNOS, leading to a vicious cycle of superoxide generation and peroxynitrite formation, with tetrahydrobiopterin depletion, causing loss of NO that triggers vascular endothelial dysfunction. This process is progressive, increasing with the duration of e-cig exposure, and is more severe in the presence of nicotine, but observed even with nicotine-free vaping.


Assuntos
Doenças Cardiovasculares , Sistemas Eletrônicos de Liberação de Nicotina , Hipertensão , Animais , Endotélio Vascular/metabolismo , Feminino , Masculino , Camundongos , NADPH Oxidases/metabolismo , Nicotina , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Ácido Peroxinitroso/metabolismo , Superóxidos/metabolismo
3.
Nitric Oxide ; 119: 9-18, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34875385

RESUMO

Cytoglobin (Cygb) has been identified as the major nitric oxide (NO) metabolizing protein in vascular smooth muscle cells (VSMCs) and is crucial for the regulation of vascular tone. In the presence of its requisite cytochrome B5a (B5)/B5 reductase-isoform-3 (B5R) reducing system, Cygb controls NO metabolism through the oxygen-dependent process of NO dioxygenation. Tobacco cigarette smoking (TCS) induces vascular dysfunction; however, the role of Cygb in the pathophysiology of TCS-induced cardiovascular disease has not been previously investigated. While TCS impairs NO biosynthesis, its effect on NO metabolism remains unclear. Therefore, we performed studies in aortic VSMCs with tobacco smoke extract (TSE) exposure to investigate the effects of cigarette smoke constituents on the rates of NO decay, with focus on the alterations that occur in the process of Cygb-mediated NO metabolism. TSE greatly enhanced the rates of NO metabolism by VSMCs. An initial increase in superoxide-mediated NO degradation was seen at 4 h of exposure. This was followed by much larger progressive increases at 24 and 48 h, accompanied by parallel increases in the expression of Cygb and B5/B5R. siRNA-mediated Cygb knockdown greatly decreased these TSE-induced elevations in NO decay rates. Therefore, upregulation of the levels of Cygb and its reducing system accounted for the large increase in NO metabolism rate seen after 24 h of TSE exposure. Thus, increased Cygb-mediated NO degradation would contribute to TCS-induced vascular dysfunction and partial inhibition of Cygb expression or its NO dioxygenase function could be a promising therapeutic target to prevent secondary cardiovascular disease.


Assuntos
Citoglobina/metabolismo , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Aorta/citologia , Sobrevivência Celular/efeitos dos fármacos , Citocromo-B(5) Redutase/metabolismo , Citocromos b5/metabolismo , Citoglobina/genética , Técnicas de Silenciamento de Genes , Camundongos , Músculo Liso Vascular/citologia , Superóxidos/metabolismo , Regulação para Cima/efeitos dos fármacos
4.
Am J Physiol Heart Circ Physiol ; 320(5): H2112-H2129, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33606584

RESUMO

Electronic cigarette (e-cig) vaping (ECV) has been proposed as a safer alternative to tobacco cigarette smoking (TCS); however, this remains controversial due to a lack of long-term comparative studies. Therefore, we developed a chronic mouse exposure model that mimics human vaping and allows comparison with TCS. Longitudinal studies were performed to evaluate alterations in cardiovascular function with TCS and ECV exposure durations of up to 60 wk. For ECV, e-cig liquid with box-mod were used and for TCS, 3R4F-cigarettes. C57/BL6 male mice were exposed 2 h/day, 5 days/wk to TCS, ECV, or air control. The role of vape nicotine levels was evaluated using e-cig-liquids with 0, 6, or 24 mg/mL nicotine. Following 16-wk exposure, increased constriction to phenylephrine and impaired endothelium-dependent and endothelium-independent vasodilation were observed in aortic segents, paralleling the onset of systemic hypertension, with elevations in systemic vascular resistance. Following 32 wk, TCS and ECV induced cardiac hypertrophy. All of these abnormalities further increased out to 60 wk of exposure, with elevated heart weight and aortic thickness along with increased superoxide production in vessels and cardiac tissues of both ECV and TCS mice. While ECV-induced abnormalities were seen in the absence of nicotine, these occurred earlier and were more severe with higher nicotine exposure. Thus, long-term vaping of e-cig can induce cardiovascular disease similar to TCS, and the severity of this toxicity increases with exposure duration and vape nicotine content.NEW & NOTEWORTHY A chronic mouse exposure model that mimics human e-cigarette vaping and allows comparison with tobacco cigarette smoking was developed and utilized to perform longitudinal studies of alterations in cardiovascular function. E-cigarette exposure led to the onset of cardiovascular disease similar to that with tobacco cigarette smoking. Impaired endothelium-dependent and endothelium-independent vasodilation with increased adrenergic vasoconstriction were observed, paralleling the onset of systemic hypertension and subsequent cardiac hypertrophy. This cardiovascular toxicity was dependent on exposure duration and nicotine dose.


Assuntos
Aorta/efeitos dos fármacos , Doenças Cardiovasculares/induzido quimicamente , Nicotina/administração & dosagem , Vaping/efeitos adversos , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Aorta/fisiopatologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Doenças Cardiovasculares/fisiopatologia , Sistemas Eletrônicos de Liberação de Nicotina , Masculino , Camundongos , Fenilefrina/farmacologia , Fatores de Tempo , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
5.
Inhal Toxicol ; 32(13-14): 477-486, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33256483

RESUMO

Objectives: To develop and test a new system for whole body exposure of small animals to support investigation of the biological effects of aerosol generated by electronic cigarette (e-cig) products under diverse inhalation conditions with improved control and monitoring of the e-cig vape exposure and nicotine delivered to the animal's systemic circulation. Methods: A computer-controlled design, with built-in sensors for real time monitoring of O2, CO2, relative humidity, and temperature within the exposure chambers and port for measuring total particulate matter (TPM) was developed, constructed and tested. This design accommodates a variety of commercial vaping devices, offers software flexibility to adjust exposure protocols to mimic different users' puffing patterns, enables variable nicotine delivery to the animal's systemic circulation; minimizes travel time and alterations of aerosol quality or quantity by delivering aerosol directly to the exposure chamber, offers local or remote operation of up to six distinct exposure chambers from a single control unit, and can simultaneously test different exposure conditions or products in diverse animal groups, which reduces inter-run variability, saves time, and increases productivity. Results: The time course pattern of TPM concentration during different phases of the exposure cycle was measured. With increased puffing duration or number of exposure cycles, higher TPM exposure and plasma cotinine levels were observed with plasma cotinine levels in the range reported in light or heavy smokers. Conclusion: Overall, this novel, versatile, and durable exposure system facilitates high-throughput evaluation of the relative safety and potential toxicity of a variety of e-cig devices and liquids.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Testes de Toxicidade/instrumentação , Administração por Inalação , Animais , Dióxido de Carbono/análise , Monóxido de Carbono/análise , Cotinina/sangue , Desenho de Equipamento , Umidade , Masculino , Camundongos Endogâmicos C57BL , Oxigênio/análise , Material Particulado/análise , Material Particulado/toxicidade , Temperatura
6.
Free Radic Biol Med ; 160: 630-642, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32739595

RESUMO

While radiotherapy is a widely used treatment for many types of human cancer, problems of radio-resistance and side effects remain. Side effects induced by ionizing radiation (IR) arise primarily from its propensity to trigger inflammation and oxidative stress with damage of normal cells and tissues near the treatment area. The highly potent superoxide dismutase mimetic, GC4419 (Galera Therapeutics), rapidly enters cells and is highly effective in dismutating superoxide (O2•-). We performed studies to assess the potency of GC4419 in cancer killing and radio-sensitization in human lung cancer cells and normal immortalized lung cells. Treatment with GC4419 did not alter the radical generation during IR, primarily hydroxyl radical (.OH); however, it quenched the increased levels of O2•- detected in the cancer cells before and following IR. GC4419 triggered cancer cell death and inhibited cancer cell proliferation with no adverse effect on normal cells. Combination of GC4419 with IR augmented the cytotoxic effects of IR on cancer cells compared to monotherapy, while protecting normal cells from IR-induced cell death. DNA fragmentation and caspase-3 activity assays showed that combination of GC4419 with IR enhances cancer cell apoptosis. Moreover, GC4419 increased IR-induced Bax levels with decreased Bcl-2 and elevated Bax/Bcl-2 ratio following treatment. GC4419 increased TrxR activity in the normal cells but decreased activity in cancer cells, conferring increased cancer cell sensitivity to oxidative stress. In conclusion, GC4419 increases the cytotoxic and pro-apoptotic activity of IR in lung cancer cells while decreasing injury in normal cells.


Assuntos
Neoplasias , Compostos Organometálicos , Apoptose , Morte Celular , Humanos , Radiação Ionizante , Superóxido Dismutase
7.
Am J Physiol Heart Circ Physiol ; 319(1): H51-H65, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32412791

RESUMO

Although there is a strong association between cigarette smoking exposure (CSE) and vascular endothelial dysfunction (VED), the underlying mechanisms by which CSE triggers VED remain unclear. Therefore, studies were performed to define these mechanisms using a chronic mouse model of cigarette smoking (CS)-induced cardiovascular disease mirroring that in humans. C57BL/6 male mice were subjected to CSE for up to 48 wk. CSE impaired acetylcholine (ACh)-induced relaxation of aortic and mesenteric segments and triggered hypertension, with mean arterial blood pressure at 32 and 48 wk of exposure of 122 ± 6 and 135 ± 5 mmHg compared with 99 ± 4 and 102 ± 6 mmHg, respectively, in air-exposed mice. CSE led to monocyte activation with superoxide generation in blood exiting the pulmonary circulation. Macrophage infiltration with concomitant increase in NADPH oxidase subunits p22phox and gp91phox was seen in aortas of CS-exposed mice at 16 wk, with further increase out to 48 wk. Associated with this, increased superoxide production was detected that decreased with Nox inhibition. Tetrahydrobiopterin was progressively depleted in CS-exposed mice but not in air-exposed controls, resulting in endothelial nitric oxide synthase (eNOS) uncoupling and secondary superoxide generation. CSE led to a time-dependent decrease in eNOS and Akt expression and phosphorylation. Overall, CSE induces vascular monocyte infiltration with increased NADPH oxidase-mediated reactive oxygen species generation and depletes the eNOS cofactor tetrahydrobiopterin, uncoupling eNOS and triggering a vicious cycle of oxidative stress with VED and hypertension. Our study provides important insights toward understanding the process by which smoking contributes to the genesis of cardiovascular disease and identifies biomarkers predictive of disease.NEW & NOTEWORTHY In a chronic model of smoking-induced cardiovascular disease, we define underlying mechanisms of smoking-induced vascular endothelial dysfunction (VED). Smoking exposure triggered VED and hypertension and led to vascular macrophage infiltration with concomitant increase in superoxide and NADPH oxidase levels as early as 16 wk of exposure. This oxidative stress was accompanied by tetrahydrobiopterin depletion, resulting in endothelial nitric oxide synthase uncoupling with further superoxide generation triggering a vicious cycle of oxidative stress and VED.


Assuntos
Endotélio Vascular/metabolismo , Leucócitos/metabolismo , Estresse Oxidativo , Lesão por Inalação de Fumaça/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , Vasodilatação , Animais , Aorta/metabolismo , Aorta/fisiopatologia , Pressão Sanguínea , Endotélio Vascular/fisiopatologia , Masculino , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lesão por Inalação de Fumaça/etiologia , Lesão por Inalação de Fumaça/fisiopatologia , Superóxidos/metabolismo
8.
Proc Natl Acad Sci U S A ; 112(37): 11648-53, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26297248

RESUMO

In the postischemic heart, coronary vasodilation is impaired due to loss of endothelial nitric oxide synthase (eNOS) function. Although the eNOS cofactor tetrahydrobiopterin (BH4) is depleted, its repletion only partially restores eNOS-mediated coronary vasodilation, indicating that other critical factors trigger endothelial dysfunction. Therefore, studies were performed to characterize the unidentified factor(s) that trigger endothelial dysfunction in the postischemic heart. We observed that depletion of the eNOS substrate NADPH occurs in the postischemic heart with near total depletion from the endothelium, triggering impaired eNOS function and limiting BH4 rescue through NADPH-dependent salvage pathways. In isolated rat hearts subjected to 30 min of ischemia and reperfusion (I/R), depletion of the NADP(H) pool occurred and was most marked in the endothelium, with >85% depletion. Repletion of NADPH after I/R increased NOS-dependent coronary flow well above that with BH4 alone. With combined NADPH and BH4 repletion, full restoration of NOS-dependent coronary flow occurred. Profound endothelial NADPH depletion was identified to be due to marked activation of the NAD(P)ase-activity of CD38 and could be prevented by inhibition or specific knockdown of this protein. Depletion of the NADPH precursor, NADP(+), coincided with formation of 2'-phospho-ADP ribose, a CD38-derived signaling molecule. Inhibition of CD38 prevented NADP(H) depletion and preserved endothelium-dependent relaxation and NO generation with increased recovery of contractile function and decreased infarction in the postischemic heart. Thus, CD38 activation is an important cause of postischemic endothelial dysfunction and presents a novel therapeutic target for prevention of this dysfunction in unstable coronary syndromes.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Endotélio Vascular/metabolismo , Isquemia/patologia , NADP/metabolismo , Animais , Biopterinas/análogos & derivados , Biopterinas/química , Doença da Artéria Coronariana/patologia , Espectroscopia de Ressonância de Spin Eletrônica , Endotélio Vascular/patologia , Coração/fisiologia , Hipóxia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/química , Óxido Nítrico Sintase Tipo III/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão
10.
J Magn Reson ; 216: 21-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22296801

RESUMO

In vivo mapping of alterations in redox status is important for understanding organ specific pathology and disease. While electron paramagnetic resonance imaging (EPRI) enables spatial mapping of free radicals, it does not provide anatomic visualization of the body. Proton MRI is well suited to provide anatomical visualization. We applied EPR/NMR co-imaging instrumentation to map and monitor the redox state of living mice under normal or oxidative stress conditions induced by secondhand cigarette smoke (SHS) exposure. A hybrid co-imaging instrument, EPRI (1.2 GHz)/proton MRI (16.18 MHz), suitable for whole-body co-imaging of mice was utilized with common magnet and gradients along with dual EPR/NMR resonators that enable co-imaging without sample movement. The metabolism of the nitroxide probe, 3-carbamoyl-proxyl (3-CP), was used to map the redox state of control and SHS-exposed mice. Co-imaging allowed precise 3D mapping of radical distribution and reduction in major organs such as the heart, lungs, liver, bladder and kidneys. Reductive metabolism was markedly decreased in SHS-exposed mice and EPR/NMR co-imaging allowed quantitative assessment of this throughout the body. Thus, in vivo EPR/NMR co-imaging enables in vivo organ specific mapping of free radical metabolism and redox stress and the alterations that occur in the pathogenesis of disease.


Assuntos
Nicotiana/química , Fumaça/efeitos adversos , Animais , Câmaras de Exposição Atmosférica , Óxidos N-Cíclicos , Campos Eletromagnéticos , Espectroscopia de Ressonância de Spin Eletrônica , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxidos de Nitrogênio/química , Especificidade de Órgãos , Oxirredução , Estresse Oxidativo , Pirrolidinas , Marcadores de Spin , Distribuição Tecidual
11.
Proteomics ; 11(10): 2051-62, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21500341

RESUMO

Cigarette smoke exposure is known to induce obstructive lung disease and several cardiovascular disease states in humans and also in animal models. Smoking leads to oxidative stress and inflammation that are important in triggering pulmonary and cardiovascular disease. The objective of the current study was to quantify differences in expression levels of plasma proteins of cigarette smoke -exposed and control mice, at the time of disease onset, and identify these proteins for use as potential biomarkers of the onset of smoking-induced disease. We utilized 2-D DIGE/MS to characterize these proteomic changes. 2-D DIGE of plasma samples identified 11 differentially expressed proteins in cigarette smoke -exposed mice. From these 11 proteins, 9 were downregulated and 2 were upregulated. The proteins identified are involved in vascular function, coagulation, metabolism and immune function. Among these, the alterations in fibrinogen (2.2-fold decrease), α-1-antitrypsin (1.8-fold increase) and arginase (4.5-fold decrease) are of particular interest since these have been directly linked to cardiovascular and lung pathology. Differences in expression levels of these proteins were also confirmed by immunoblotting. Thus, we observe that chronic cigarette smoke exposure in mice leads to prominent changes in the protein expression profile of blood plasma and these changes in turn can potentially serve as markers predictive of the onset and progression of cardiovascular and pulmonary disease.


Assuntos
Proteínas Sanguíneas/análise , Eletroforese em Gel Bidimensional/métodos , Espectrometria de Massas/métodos , Proteoma/química , Poluição por Fumaça de Tabaco , Animais , Biomarcadores , Proteínas Sanguíneas/metabolismo , Western Blotting , Carbocianinas , Estudos de Casos e Controles , Processamento de Imagem Assistida por Computador , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Proteoma/metabolismo , Transdução de Sinais
12.
Mutat Res ; 706(1-2): 28-35, 2011 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-21040738

RESUMO

The use of innocuous naturally occurring compounds to overcome drug resistance and cancer recalcitrance is now in the forefront of cancer research. Thymoquinone (TQ) is a bioactive constituent of the volatile oil derived from seeds of Nigella sativa Linn. TQ has shown promising anti-carcinogenic and anti-tumor activities through different mechanisms. However, the effect of TQ on cell signaling and survival pathways in resistant cancer cells has not been fully delineated. Here, we report that TQ greatly inhibits doxorubicin-resistant human breast cancer MCF-7/DOX cell proliferation. TQ treatment increased cellular levels of PTEN proteins, resulting in a substantial decrease of phosphorylated Akt, a known regulator of cell survival. The PTEN expression was accompanied with elevation of PTEN mRNA. TQ arrested MCF-7/DOX cells at G2/M phase and increased cellular levels of p53 and p21 proteins. Flow cytometric analysis and agarose gel electrophoresis revealed a significant increase in Sub-G1 cell population and appearance of DNA ladders following TQ treatment, indicating cellular apoptosis. TQ-induced apoptosis was associated with disrupted mitochondrial membrane potential and activation of caspases and PARP cleavage in MCF-7/DOX cells. Moreover, TQ treatment increased Bax/Bcl2 ratio via up-regulating Bax and down-regulating Bcl2 proteins. More importantly, PTEN silencing by target specific siRNA enabled the suppression of TQ-induced apoptosis resulting in increased cell survival. Our results reveal that up-regulation of the key upstream signaling factor, PTEN, in MCF-7/DOX cells inhibited Akt phosphorylation, which ultimately causes increase in their regulatory p53 levels affecting the induction of G2/M cell cycle arrest and apoptosis. Overall results provide mechanistic insights for understanding the molecular basis and utility of the anti-tumor activity of TQ.


Assuntos
Apoptose/efeitos dos fármacos , Benzoquinonas/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo , Benzoquinonas/química , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caspases/metabolismo , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Feminino , Fase G2/efeitos dos fármacos , Humanos , Estrutura Molecular , PTEN Fosfo-Hidrolase/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
13.
Am J Physiol Heart Circ Physiol ; 300(1): H388-96, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21057039

RESUMO

Cigarette smoking is a major independent risk factor for cardiovascular disease. While the association between chronic smoking and cardiovascular disease is well established, the underlying mechanisms are incompletely understood, partly due to the lack of adequate in vivo animal models. Here, we report a mouse model of chronic smoking-induced cardiovascular pathology. Male C57BL/6J mice were exposed to whole body mainstream cigarette smoke (CS) using a SCIREQ "InExpose" smoking system (48 min/day, 5 days/wk) for 16 or 32 wk. Age-matched, air-exposed mice served as nonsmoking controls. Blood pressure was measured, and cardiac MRI was performed. In vitro vascular ring and isolated heart experiments were performed to measure vascular reactivity and cardiac function. Blood from control and smoking mice was studied for the nitric oxide (NO) decay rate and reactive oxygen species (ROS) generation. With 32 wk of CS exposure, mice had significantly less body weight gain and markedly higher blood pressure. At 32 wk of CS exposure, ACh-induced vasorelaxation was significantly shifted to the right and downward, left ventricular mass was significantly larger along with an increased heart-to-body weight ratio, in vitro cardiac function tended to be impaired with high afterload, white blood cells had significantly higher ROS generation, and the blood NO decay rate was significantly faster. Thus, smoking led to blunted weight gain, hypertension, endothelial dysfunction, leukocyte activation with ROS generation, decreased NO bioavailability, and mild cardiac hypertrophy in mice that were not otherwise predisposed to disease. This mouse model is a useful tool to enable further elucidation of the molecular and cellular mechanisms of smoking-induced cardiovascular diseases.


Assuntos
Endotélio Vascular/fisiopatologia , Hipertensão/etiologia , Óxido Nítrico/metabolismo , Estresse Oxidativo , Fumar/efeitos adversos , Remodelação Ventricular , Análise de Variância , Animais , Pressão Sanguínea , Peso Corporal , Endotélio Vascular/metabolismo , Coração/fisiopatologia , Hipertensão/metabolismo , Imageamento por Ressonância Magnética , Masculino , Camundongos , Miocárdio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Risco , Fumaça , Nicotiana
14.
Nitric Oxide ; 23(4): 311-8, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20854922

RESUMO

Carbon fiber microelectrodes and carbon fiber composite minielectrodes (CFM/CFCM) have been generally used for measurements of nitric oxide (NO) concentration in chemical and biological systems. The response time of a CFM/CFCM is usually from milliseconds to seconds depending on the electrode size, the thickness of coating layers on the electrode, and NO diffusion coefficients of the coating layers. As a result, the time course of recoded current changes (I-t curves) by the CFM/CFCM may be different from the actual time course of NO concentration changes (c-t curves) if the half-life of NO decay is close to or shorter than the response time of the electrode used. This adds complexity to the process for determining rate constants of NO decay kinetics from the recorded current curves (I-t curves). By computer simulations based on a mathematical model, an approximation method was developed for determining rate constants of NO decay from the recorded current curves. This method was first tested and valuated using a commercial CFCM in several simple reaction systems with known rate constants. The response time of the CFCM was measured as 4.7±0.7 s (n=5). The determined rate constants of NO volatilization and NO autoxidation in our measurement system at 37 °C are (1.9±0.1)×10(-3) s(-1) (n=4) and (2.0±0.3)×10(3) M(-1) s(-1) (n=7), which are close to the reported rate constants. The method was then applied to determine the rate of NO decay in blood samples from control and smoking exposed mice. It was observed that the NO decay rate in the smoking group is >20% higher than that in control group, and the increased NO decay rate in the smoking group was reversed by 10 µM diphenyleneiodonium chloride (DPI), an inhibitor of flavin enzymes such as leukocyte NADPH oxidase.


Assuntos
Técnicas Biossensoriais/métodos , Carbono/química , Nanocompostos/química , Óxido Nítrico/análise , Óxido Nítrico/metabolismo , Animais , Fibra de Carbono , Simulação por Computador , Difusão , Eletrodos , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Soluções
15.
Int J Cancer ; 127(4): 977-88, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20013802

RESUMO

Cisplatin is one of the most widely used anticancer agents, displaying activity against a wide variety of tumors. However, development of drug resistance presents a challenging barrier to successful cancer treatment by cisplatin. To understand the mechanism of cisplatin resistance, we investigated the role of damaged DNA binding protein complex subunit 2 (DDB2) in cisplatin-induced cytotoxicity and apoptosis. We show that DDB2 is not required for the repair of cisplatin-induced DNA damage, but can be induced by cisplatin treatment. DDB2-deficient noncancer cells exhibit enhanced resistance to cell growth inhibition and apoptosis induced by cisplatin than cells with fully restored DDB2 function. Moreover, DDB2 expression in cisplatin-resistant ovarian cancer cell line CP70 and MCP2 was lower than their cisplatin-sensitive parental A2780 cells. Overexpression of DDB2 sensitized CP70 cells to cisplatin-induced cytotoxicity and apoptosis via activation of the caspase pathway and downregulation of antiapoptotic Bcl-2 protein. Further analysis indicates that the overexpression of DDB2 in CP70 cells downregulates Bcl-2 expression through decreasing Bcl-2 mRNA level. These results suggest that ovarian cancer cells containing high level of DDB2 become susceptible to cisplatin by undergoing enhanced apoptosis.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Western Blotting , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Proteínas de Ligação a DNA/genética , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Citometria de Fluxo , Humanos , Neoplasias Ovarianas/tratamento farmacológico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Cancer Res ; 69(23): 8910-7, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19903849

RESUMO

Combination of innocuous dietary components with anticancer drugs is an emerging new strategy for cancer chemotherapy to increase antitumor responses. Tangeretin is a citrus flavonoid known to inhibit cancer cell proliferation. Here, we show an enhanced response of A2780/CP70 and 2008/C13 cisplatin-resistant human ovarian cancer cells to various combination treatments of cisplatin and tangeretin. Pretreatment of cells with tangeretin before cisplatin treatment synergistically inhibited cancer cell proliferation. This combination was effective in activating apoptosis via caspase cascade as well as arresting cell cycle at G(2)-M phase. Moreover, phospho-Akt and its downstream substrates, e.g., NF-kappaB, phospho-GSK-3beta, and phospho-BAD, were downregulated upon tangeretin-cisplatin treatment. The tangeretin-cisplatin-induced apoptosis in A2780/CP70 cells was increased by phosphoinositide-3 kinase (PI3K) inhibition and siRNA-mediated Akt silencing, but reduced by overexpression of constitutively activated Akt and GSK-3beta inhibition. The overall results indicated that tangeretin exposure preconditions cisplatin-resistant human ovarian cancer cells for a conventional response to low-dose cisplatin-induced cell death occurring through downregulation of PI3K/Akt signaling pathway. Thus, effectiveness of tangeretin combinations, as a promising modality in the treatment of resistant cancers, warrants systematic clinical studies.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Cisplatino/farmacologia , Flavonas/farmacologia , Proteína Oncogênica v-akt/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Cisplatino/administração & dosagem , Regulação para Baixo/efeitos dos fármacos , Esquema de Medicação , Sinergismo Farmacológico , Feminino , Flavonas/administração & dosagem , Fase G2/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Neoplasias Ovarianas/patologia , Transdução de Sinais/efeitos dos fármacos
17.
Photochem Photobiol ; 84(2): 307-16, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18086244

RESUMO

Many naturally occurring agents are believed to protect against UV-induced skin damage. In this study, we have investigated the effects of naringenin (NG), a naturally occurring citrus flavonone, on the removal of UVB-induced cyclobutane pyrimidine dimers (CPD) from the genome and apoptosis in immortalized p53-mutant human keratinocyte HaCaT cells. The colony-forming assay shows that treatment with NG significantly increases long-term cell survival after UVB irradiation. NG treatment also protects the cells from UVB-induced apoptosis, as indicated by the absence of the 180 base pair DNA ladders and the appearance of sub-G1 peak using agarose gel electrophoresis and flow cytometric analysis, respectively. The UVB-induced poly (ADP-ribose) polymerase-1 (PARP-1) cleavage, caspase activation and Bax/Bcl2 ratio were modulated following NG treatment, indicating an antiapoptotic effect of NG in UVB-damaged cells that occurs at least in part via caspase cascade pathway. Moreover, treatment of UVB-irradiated HaCaT cells with NG enhances the removal of CPD from the genome, as observed by both direct quantitation of CPD in genomic DNA and immuno-localization of the damage within the nuclei. The study provides a molecular basis for the action of NG as a promising natural flavonoid in preventing skin aging and carcinogenesis.


Assuntos
Apoptose/efeitos dos fármacos , Flavanonas/farmacologia , Genoma Humano , Queratinócitos/efeitos dos fármacos , Dímeros de Pirimidina/isolamento & purificação , Raios Ultravioleta , Sequência de Aminoácidos , Apoptose/efeitos da radiação , Linhagem Celular , Humanos , Queratinócitos/efeitos da radiação , Dados de Sequência Molecular
18.
Neuroradiology ; 49(9): 761-6, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17569037

RESUMO

INTRODUCTION: The Guglielmi detachable coil (GDC) 360 degrees, a new complex shaped bare platinum coil, became available in Europe for aneurysm treatment in September 2005. The purpose of this study was to assess the feasibility and safety of selective embolization of intracranial aneurysms with the GDC 360 degrees in 52 consecutive patients. METHODS: All patients included in this study were registered in a prospectively maintained database. We assessed the patient clinical history, aneurysm shape and dimensions, technical details and complications of the procedures, degree of aneurysm occlusion, and clinical findings upon discharge. In all patients, the first coil deployed was a GDC 360 degrees . RESULTS: Over a 6-month period, we intended to treat 52 aneurysms with the GDC 360 degrees in 52 patients. Of these 52 patients, 42 (81%) were treated in the context of subarachnoid haemorrhage. In 51 of 52 patients, the underlying aneurysm was successfully treated by coil embolization. Six procedures (11.5%) were complicated by the formation of thrombus in the parent artery during the intervention. One patient suffered a stroke related to the procedure. Angiograms obtained immediately after the procedure showed complete occlusion of the aneurysmal sac in 38 of 51 procedures (74.5%), a neck remnant in 11 (21.6%), and a residual aneurysm in 2 (3.9%). In 43 of 51 patients (84.3%), clinical assessment demonstrated independent clinical status, whereas 7 patients (13.7%) required assistance in the activities of daily living upon hospital discharge. One patient (2.0%) died after development of a severe vasospasm 10 days after the endovascular procedure. CONCLUSION: The GDC 360 degrees can be safely used for the endovascular occlusion of intracranial aneurysms.


Assuntos
Aneurisma Roto/terapia , Angioplastia , Embolização Terapêutica/instrumentação , Aneurisma Intracraniano/terapia , Adolescente , Adulto , Idoso , Aneurisma Roto/diagnóstico por imagem , Criança , Estudos de Coortes , Desenho de Equipamento , Feminino , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Platina , Polipropilenos , Radiografia , Resultado do Tratamento
19.
Food Chem Toxicol ; 45(1): 88-92, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17011106

RESUMO

Thymoquione (TQ), the main constituent of the volatile oil of Nigella sativa seeds, has been shown to protect mice against benzo(a)pyrene [B(a)P]-induced forestomach carcinogenesis. The present investigation was undertaken to study the possible chemopreventive activity of TQ, supplemented in the drinking water, against B(a)P-induced chromosomal aberrations (CAs) in mouse bone marrow cells. Male Swiss albino mice received TQ (0.01% in drinking water) daily for 28 days. The daily dose of TQ was estimated to be 10mg/kg based on the calculated average daily water consumption by mice. From day 9, the carcinogen, B(a)P, was given by gastric intubation at dose level of 50mg/kg on alternative days for a total of 8 doses. On day 29, all mice were transferred to a normal drinking tap water. Control groups received corn oil vehicle, TQ alone or B(a)P alone. All mice were sacrificed at 12 weeks after the end of the treatment. Chromosome preparations were made of bone marrow. Cytogenetic end points screened were the frequencies of CAs and damaged cells induced. Daily intake of TQ after and before or during exposure to B(a)P significantly reduced the frequencies of CAs and damaged cells compared to the highly clastogenic activity of B(a)P alone.


Assuntos
Antimutagênicos/farmacologia , Benzo(a)pireno/toxicidade , Benzoquinonas/farmacologia , Aberrações Cromossômicas/efeitos dos fármacos , Mutagênicos/toxicidade , Nigella/química , Administração Oral , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/patologia , Quimioprevenção , Aberrações Cromossômicas/induzido quimicamente , Masculino , Camundongos , Sementes/química , Abastecimento de Água
20.
Cancer Res ; 66(17): 8590-7, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16951172

RESUMO

Functional defect in DNA damage binding (DDB) activity has a direct relationship to decreased nucleotide excision repair (NER) and increased susceptibility to cancer. DDB forms a complex with cullin 4A (Cul4A), which is now known to ubiquitylate DDB2, XPC, and histone H2A. However, the exact role of DDB1 in NER is unclear. In this study, we show that DDB1 knockdown in human cells impaired their ability to efficiently repair UV-induced cyclobutane pyrimidine dimers (CPD) but not 6-4 photoproducts (6-4PP). Extensive nuclear protein fractionation and chromatin association analysis revealed that upon irradiation, DDB1 protein is translocated from a loosely bound to a tightly bound in vivo chromatin fraction and the DDB1 translocation required the participation of functional DDB2 protein. DDB1 knockdown also affected the translocation of Cul4A component to the tightly bound form in UV-damaged chromatin in vivo as well as its recruitment to the locally damaged nuclear foci in situ. However, DDB1 knockdown had no effect on DNA damage binding capacity of DDB2. The data indicated that DDB2 can bind to damaged DNA in vivo as a monomer, whereas Cul4A recruitment to damage sites depends on the fully assembled complex. Our data also showed that DDB1 is required for the UV-induced DDB2 ubiquitylation and degradation. In summary, the results suggest that (a) DDB1 is critical for efficient NER of CPD; (b) DDB1 acts in bridging DDB2 and ubiquitin ligase Cul4A; and (c) DDB1 aids in recruiting the ubiquitin ligase activity to the damaged sites for successful commencement of lesion processing by NER.


Assuntos
Proteínas Culina/metabolismo , Dano ao DNA , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Ligação a DNA/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Gentamicinas/farmacologia , Células HeLa , Humanos , Proteínas Recombinantes/metabolismo , Transfecção , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA