Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Hazard Mater ; 476: 134905, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38941827

RESUMO

Numerous studies shown that silicon (Si) enhanced plants' resistance to cadmium (Cd). Most studies primarily focused on investigating the impact of Si on Cd accumulation. However, there is a lack of how Si enhanced Cd resistance through regulation of water balance. The study demonstrated that Si had a greater impact on increasing fresh weight compared to dry weight under Cd stress. This effect was mainly attributed to Si enhanced plant relative water content (RWC). Plant water content depends on the dynamic balance of water loss and water uptake. Our findings revealed that Si increased transpiration rate and stomatal conductance, leading to higher water loss. This, in turn, negatively impacted water content. The increased water content caused by Si could ascribe to improve root water uptake. The Si treatment significantly increased root hydraulic conductance (Lpr) by 131 % under Cd stress. This enhancement was attributed to Si upregulation genes expression of NtPIP1;1, NtPIP1;2, NtPIP1;3, and NtPIP2;1. Through meticulously designed scientific experiments, this study showed that Si enhanced AQP activity, leading to increased water content that diluted Cd concentration and ultimately improved plant Cd resistance. These findings offered fresh insights into the role of Si in bolstering plant resistance to Cd.

2.
Ecotoxicol Environ Saf ; 281: 116596, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38896899

RESUMO

Cadmium (Cd), which accumulates in tobacco leaves, enters the human body through inhalation of smoke, causing harmful effects on health. Therefore, identifying the pivotal factors that govern the absorption and resistance of Cd in tobacco is crucial for mitigating the harmful impact of Cd. In the present study, four different Cd-sensitive varieties, namely, ZhongChuan208 (ZC) with resistance, ZhongYan100 (ZY), K326 with moderate resistance, and YunYan87 (YY) with sensitivity, were cultivated in hydroponic with different Cd concentrations (20 µM, 40 µM, 60 µM and 80 µM). The results indicated that plant growth was significantly decreased by Cd. Irrespective of the Cd concentration, ZC exhibited the highest biomass, while YY had the lowest biomass; ZY and K326 showed intermediate levels. Enzymatic (APX, CAT, POD) and nonenzymatic antioxidant (Pro, GSH) systems showed notable variations among varieties. The multifactor analysis suggested that the ZC and ZY varieties, with higher levels of Pro and GSH content, contribute to a decrease in the levels of MDA and ROS. Among all the Cd concentrations, ZC exhibited the lowest Cd accumulation, while YY showed the highest. Additionally, there were significant differences observed in Cd distribution and translocation factors among the four different varieties. In terms of Cd distribution, cell wall Cd accounted for the highest proportion of total Cd, and organelles had the lowest proportion. Among the varieties, ZC showed lower Cd levels in the cell wall, soluble fraction, and organelles. Conversely, YY exhibited the highest Cd accumulation in all tissues; K326 and ZY had intermediate levels. Translocation factors (TF) varied among the varieties under Cd stress, with ZC and ZY showing lower TF compared to YY and K326. This phenomenon mainly attributed to regulation of the NtNramp3 and NtNramp5 genes, which are responsible for the absorption and transport of Cd. This study provides a theoretical foundation for the selection and breeding of tobacco varieties that are resistant to or accumulate less Cd.

3.
Heliyon ; 10(10): e30929, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38765047

RESUMO

Among the range of severe plant diseases, bacterial soft rot caused by Erwinia carotovora is a significant threat to crops. This study aimed to examine the varying response patterns of distinct potato cultivars to the influence of E. carotovora. Furthermore, it seeks to highlight the potential role of salicylic acid (SA) and methyl jasmonate (MeJA) in stimulating the antioxidant defence system. We collected eight bacterial isolates from diseased and rotted tubers which were morphologically and physiologically identified as E. carotovora subsp. carotovora. We conducted a greenhouse experiment to analyse the antioxidant responses of three different potato cultivars (Diamont, Kara, and Karros) at various time intervals (2, 4, 6, 8, 12, and 24 h) after bacterial infection (hpi). We assessed the extent of disease damage by applying a foliar spray of 0.9 mM salicylic acid (SA) and 70 µM methyl jasmonate (MeJA). Inoculating with Ecc led to an increase in total phenolic levels, as well as the activities and gene expression of phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO) and peroxidase (POX) as time progressed. Additionally, the application of SA and MeJA resulted in a further increase relative to the diseased treatments. The Karros cultivar, unlike the Diamont and Kara cultivars, demonstrated the highest expression levels of PAL, PPO and POX through inoculation, reflecting its higher levels of activity and resistance. Furthermore, the genetic response of potato cultivars to infection at 0 hpi varied depending on their susceptibility. The examination of the rate of PAL activity upregulation following SA or MeJA stimulation clarifies the cultivars' susceptibility over time. In conclusion, the study identified E. carotovora subsp. carotovora as the most virulent isolate causing soft rot disease in potato tubers. It further revealed that the Karros cultivar displayed superior resistance with high activities and gene expression of PAL, PPO and POX, while the cv. Diamont exhibited sensitivity. Additionally, foliar exposure to SA and MeJA induced antioxidant responses, enhancing the potato plants' resistance against Ecc pathogenesis and overall plant defence.

4.
Environ Pollut ; 350: 123952, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38641035

RESUMO

The adversities of cadmium (Cd) contamination are quite distinguished among other heavy metals (HMs), and so is the efficacy of zinc (Zn) nutrition in mitigating Cd toxicity. Rice (Oryza sativa) crop, known for its ability to absorb HMs, inadvertently facilitates the bioaccumulation of Cd, posing a significant risk to both the plant itself and to humans consuming its edible parts, and damaging the environment as well. The use of nanoparticles, such as nano-zinc oxide (nZnO), to improve the nutritional quality of crops and combat the harmful effects of HMs, have gained substantial attention among scientists and farmers. While previous studies have explored the individual effects of nZnO or Serendipita indica (referred to as S.i) on Cd toxicity, the synergistic action of these two agents has not been thoroughly investigated. Therefore, the gift of nature, i.e., S. indica, was incorporated alongside nZnO (50 mg L-1) against Cd stress (15 µM L-1) and their alliance manifested as phenotypic level modifications in two rice genotypes (Heizhan43; Hz43 and Yinni801; Yi801). Antioxidant activities were enhanced, specifically peroxidase (61.5 and 122.5% in Yi801 and Hz43 roots, respectively), leading to a significant decrease in oxidative burst; moreover, Cd translocation was reduced (85% for Yi801 and 65.5% for Hz43 compared to Cd alone treatment). Microstructural study showed a decrease in number of vacuoles and starch granules with ameliorative treatments. Overall, plants treated with nZnO displayed gene expression pattern (particularly of ZIP genes), different from the ones with alone or combined S.i and Cd. Inferentially, the integration of nZnO and S.i holds great promise as an effective strategy for alleviating Cd toxicity in rice plants. By immobilizing Cd ions in the soil and promoting their detoxification, this novel approach contributes to environmental restoration and ensures food safety worldwide.


Assuntos
Antioxidantes , Cádmio , Oryza , Poluentes do Solo , Oryza/genética , Oryza/metabolismo , Cádmio/toxicidade , Antioxidantes/metabolismo , Poluentes do Solo/toxicidade , Zinco/toxicidade , Óxido de Zinco/toxicidade , Óxido de Zinco/farmacologia , Nanopartículas Metálicas/toxicidade
5.
J Environ Manage ; 356: 120673, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508003

RESUMO

Microplastics (MPs) accumulation in terrestrial ecosystems can affect greenhouse gases (GHGs) production by altering microbial and soil structure. Presently, research on the MPs effect on plants is not consistent, and underlying molecular mechanisms associated with GHGs are yet unknown. For the first time, we conducted a microcosm study to explore the impact of MPs addition (Raw vs. aged) and Trichoderma longibrachiatum and Bacillus subtilis inoculation (Sole vs. combination) on GHGs emission, soil community structure, physiochemical properties, and enzyme activities. Our results indicated that the addition of aged MPs considerably enhanced the GHGs emissions (N2O (+16%) and CO2 (+21%), respectively), C and N cycling gene expression, microbial biomass carbon, and soil physiochemical properties than raw MPs. However, the soil microbial community structure and enzyme activities were enhanced in raw MPs added treatments, irrespective of the MPs type added to soil. However, microbial inoculation significantly reduced GHGs emission by altering the expression of C and N cycling genes in both types of MPs added treatments. The soil microbial community structure, enzymes activities, physiochemical properties and microbial biomass carbon were enhanced in the presence of microbial inoculation in both type of MPs. Among sole and combined inoculation of Trichoderma and Bacillus subtilis, the co-applied Trichoderma and Bacillus subtilis considerably reduced the GHGs emission (N2O (-64%) and CO2 (-61%), respectively) by altering the expression of C and N cycling genes regardless of MPs type used. The combined inoculation also enhanced soil enzyme activities, microbial community structure, physiochemical properties and microbial biomass carbon in both types of MPs treatment. Our findings provide evidence that polyethylene MPs likely pose a high risk of GHGs emission while combined application of Trichoderma and Bacillus subtilis significantly reduced GHGs emission by altering C and N cycling gene expression, soil microbial community structure, and enzyme activities under MPs pollution in a terrestrial ecosystem.


Assuntos
Gases de Efeito Estufa , Microbiota , Gases de Efeito Estufa/análise , Solo/química , Microplásticos , Plásticos , Dióxido de Carbono/análise , Carbono , Bactérias , Óxido Nitroso/análise
6.
Molecules ; 28(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36903337

RESUMO

Iron oxide nanoparticles (Fe2O3-NPs) were synthesized using Oscillatoria limnetica extract as strong reducing and capping agents. The synthesized iron oxide nanoparticles IONPs were characterized by UV-visible spectroscopy, Fourier transform infrared (FTIR), X-ray diffractive analysis (XRD), scanning electron microscope (SEM), and Energy dispersive X-ray spectroscopy (EDX). IONPs synthesis was confirmed by UV-visible spectroscopy by observing the peak at 471 nm. Furthermore, different in vitro biological assays, which showed important therapeutic potentials, were performed. Antimicrobial assay of biosynthesized IONPs was performed against four different Gram-positive and Gram-negative bacterial strains. E. coli was found to be the least suspected strain (MIC: 35 µg/mL), and B. subtilis was found to be the most suspected strain (MIC: 14 µg/mL). The maximum antifungal assay was observed for Aspergillus versicolor (MIC: 27 µg mL). The cytotoxic assay of IONPs was also studied using a brine shrimp cytotoxicity assay, and LD50 value was reported as 47 µg/mL. In toxicological evaluation, IONPs was found to be biologically compatible to human RBCs (IC50: >200 µg/mL). The antioxidant assay, DPPH 2,2-diphenyl-1-picrylhydrazyly was recorded at 73% for IONPs. In conclusion, IONPs revealed great biological potential and can be further recommended for in vitro and in vivo therapeutic purposes.


Assuntos
Escherichia coli , Nanopartículas Metálicas , Humanos , Nanopartículas Metálicas/química , Antifúngicos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/química , Extratos Vegetais/química , Difração de Raios X , Testes de Sensibilidade Microbiana
7.
Molecules ; 28(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36903647

RESUMO

The present investigation was performed to evaluate the variability of the essential oil composition present in the seed extract of Kala zeera (Bunium persicum Bioss.) obtained from different geographical zones of Northwestern-Himalayan using Gas Chromatography-Mass Spectrum (GC-MS). The results of the GC-MS analysis revealed significant differences in the essential oil content. Significant variability was observed in the chemical constituents of the essential oils mainly for p-cymene, D-limonene, Gamma-terpinene, Cumic aldehyde and 1, 4-p-menthadien-7-al. Among these compounds, the highest average percentage across the locations was observed for gamma-terpinene (32.08%) which was followed by cumic aldehyde (25.07%), and 1, 4-p-menthadien-7-al (15.45%). Principal component analysis (PCA) also grouped the 4 highly significant compounds i.e., p-Cymene, Gamma-Terpinene, Cumic aldehyde, and 1,4-p-Menthadien-7-al into same cluster which are mainly distributed in Shalimar Kalazeera-1, and Atholi Kishtwar zones. The highest value of gamma-terpinene was recorded in Atholi accession (40.66%). However, among climatic zones Zabarwan Srinagar and Shalimar Kalazeera-1 was found to have highly positive significant correlation (0.99). The cophenetic correlation coefficient (c) was found to be 0.8334 during hierarchical clustering for 12 essential oil compounds showing that our results are highly correlated. Network analysis also showed the overlapping pattern and similar interaction between the 12 compounds as shown by hierarchical clustering analysis. From the results, it could be concluded that existence of variability among the various bioactive compounds of B. persicum which are probably to be incorporated to the potential list of drugs and may serve as good genetic source for various modern breeding programs.


Assuntos
Apiaceae , Óleos Voláteis , Óleos Voláteis/química , Melhoramento Vegetal , Apiaceae/química , Aldeídos
8.
Environ Pollut ; 316(Pt 2): 120641, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372365

RESUMO

Cadmium (Cd) toxicity can significantly limit plant growth and development. To eliminate the toxic effects of Cd stress, we intended to evaluate the biochemical mediated physiological responses in maize treated with biostimulant and zinc oxide nanoparticles (ZnPs). In silico analysis exhibited that the maize treated with Cd stress (200 µM) had an adverse impact on CAT1, CAT2, CAT3 and gor1 proteins, which are influential in managing the machinery of redox homeostasis. While maize inoculated with bacteria-based biostimulant and ZnPs (10 ppm) showed prominently improved biomass, chlorophyll a, b and carotenoid content. We found a significant increase in the total sugar, protein, proline content and antioxidants under the effect of Cd stress. However, these parameters are further enhanced by applying biostimulants and ZnPs. Declined lipid peroxidation and membrane solubilization index under the effect of biostimulant and ZnPs was observed. Furthermore, these treatments improved maize's zinc, copper, sodium, magnesium, iron, potassium and calcium content. Based on these results, an antagonistic relationship between Zn and Cd uptake that triggered efficient Cd detoxification in maize shoot was found. Scanning electron micrography showed distorted leaf structure of the Cd stressed plants while the biostimulant and ZnPs reduced the structural cell damage of maize leaves. In silico study showed that ZnO positively regulates all protein interactors, including GRMZM2G317386_P01 (Metallo endo proteinase 1-MMP), GRMZM2G110220_P01 (Metallo endo proteinase 5-MMP), GRMZM2G103055_P01 (Alpha-amylase) and GRMZM2G006069_P01 (Zn-dependent exo peptidase superfamily) proteins which are involved in energy generating processes, channels formation, matrix re-localization and stress response. This suggests that ZnO offers an ideal role with protein interactors in maize. Our findings depict that these treatments, i.e., biostimulant and ZnPs alone, are efficient enough to exhibit Cd remediation potential in maize; however, their combination showed synergistic effects.


Assuntos
Nanopartículas , Poluentes do Solo , Óxido de Zinco , Cádmio/análise , Zea mays/metabolismo , Óxido de Zinco/toxicidade , Óxido de Zinco/metabolismo , Poluentes do Solo/análise , Clorofila A/metabolismo , Nanopartículas/toxicidade , Nanopartículas/química , Peptídeo Hidrolases/metabolismo
9.
Environ Pollut ; 313: 120229, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36152705

RESUMO

The promising response of chromium-stressed (Cr(VI)-S) plants to hydrogen sulphide (H2S) has been observed, but the participation of nitric oxide (NO) synthesis in H2S-induced Cr(VI)-S tolerance in plants remains to be elucidated. It was aimed to assess the participation of NO in H2S-mediated Cr(VI)-S tolerance by modulating subcellular distribution of Cr and the ascorbate-glutathione (AsA-GSH) cycle in the pepper seedlings. Two weeks following germination, plants were exposed to control (no Cr) or Cr(VI)-S (50 µM K2Cr2O7) for further two weeks. The Cr(VI)-S-plants grown in nutrient solution were supplied with 200 µM sodium hydrosulphide (NaHS, donor of H2S), or NaHS plus 100 µM sodium nitroprusside (SNP, a donor of NO). Chromium stress suppressed plant growth and leaf water status, while elevated proline content, oxidative stress, and the activities of AsA-GSH related enzymes, as well as endogenous H2S and NO contents. The supplementation of NaHS increased Cr accumulation at root cell walls and vacuoles of leaves as soluble fraction to reduce its toxicity. Furthermore it limited oxidative stress, improved plant growth, modulated leaf water status, and the AsA-GSH cycle-associated enzymes' activities, as well as it further improved H2S and NO contents. The positive effect of NaHS was found to be augmented on those parameters in the CrS-plants by the SNP supplementation. However, 0.1 mM cPTIO, the scavenger of NO, inverted the prominent effect of NaHS by decreasing NO content. The supplementation of SNP along with NaHS + cPTIO reinstalled the positive effect of NaHS by restoring NO content, which suggested that NO might have a potential role in H2S-induced tolerance to Cr(VI)-S in pepper plants by stepping up the AsA-GSH cycle.


Assuntos
Capsicum , Sulfeto de Hidrogênio , Antioxidantes/metabolismo , Benzoatos , Capsicum/metabolismo , Cromo/metabolismo , Cromo/toxicidade , Glutationa/metabolismo , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/toxicidade , Imidazóis , Óxido Nítrico/metabolismo , Nitroprussiato/farmacologia , Estresse Oxidativo , Prolina/metabolismo , Prolina/farmacologia , Plântula , Sulfetos , Água/metabolismo
10.
PLoS One ; 17(5): e0266372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35613077

RESUMO

Thiamin is a crucial vitamin with a vast variety of anti-oxidative and physiological roles in plants subjected to abiotic stresses. We examined the efficiency of foliar-applied thiamin (50 and 100 mM) on growth, yield quality and key-biochemical characteristics of two cultivars (FD1 and FD3) of cauliflower (Brassica oleracea L.) under water-deficit stress. Water stress at the rate of 50% field capacity (F.C.) markedly decreased the plant biomass, leaf total phenolics and ascorbic acid (AsA) contents. In contrast, drought-induced increase was noted in the leaf [hydrogen peroxide (H2O2), AsA, proline, malondialdehyde (MDA), glycinebetaine (GB), total soluble proteins and oxidative defense system in terms of high activities of peroxidase (POD), and catalase (CAT) enzymes] and the inflorescence (total phenolics, proline, GB, MDA, H2O2, and activities of SOD and CAT enzymes) characteristics of cauliflower. However, foliar-applied thiamin significantly improved growth and physio-biochemical attributes except leaf and inflorescence MDA and H2O2 contents of both cauliflower cultivars under water stress. Overall, application of thiamin enhanced the plant growth may be associated with suppressed reactive oxygen species (ROS) and upregulated antioxidants defense system of cauliflower.


Assuntos
Fenômenos Bioquímicos , Brassica , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Betaína/metabolismo , Botrytis/metabolismo , Brassica/metabolismo , Desidratação/metabolismo , Peróxido de Hidrogênio/metabolismo , Prolina/metabolismo , Tiamina/metabolismo
11.
PLoS One ; 17(5): e0263289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35613105

RESUMO

This research was carried out to evaluate the effect of biochar and compost application on Spinacia oleracea growth in cadmium contaminated soil. Cd toxicity decreased plant growth and biomass significantly and also negatively affected the physiological and biochemical attributes of plants. However, the application of biochar and compost improved the contaminated soil by reducing Cd toxicity and causing its immobilization, which in turn improved plant growth. The combined application of biochar and compost significantly (p < 0.05) enhanced biomass and photosynthetic pigments development in plants. The treatments also increased membrane stability index by 45.12% and enhanced water using efficiency by 218.22%, respectively. The increase in antioxidant activities was 76.03%, 29.02%, and 123.27% in superoxide dismutase, peroxidase, and catalase, respectively. The combined application also reduced the cadmium content (reduced 40.14% in root and 51.16% shoot), its translocation (19.67% decrease), and bioaccumulation (52.63% and 40.32% decrease in Cd content in shoot and root, respectively) in spinach plant. Among the two selected varieties of S. oleracea, Desi palak (V1) performed better as compared to Kanta palak (V2). It can be concluded that the combined application of biochar and compost is one of the best strategies to reduce the toxicity level of Cd in plants and to improve their growth.


Assuntos
Compostagem , Poluentes do Solo , Cádmio/análise , Carvão Vegetal/química , Solo/química , Poluentes do Solo/análise , Spinacia oleracea/química
12.
PLoS One ; 16(12): e0259585, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34882694

RESUMO

Optimum water availability at different growth stages is one the major prerequisites of best growth and yield production of plants. Exogenous application of plant growth regulators considered effective for normal functioning of plants under water-deficit conditions. A study was conducted to examine the influence of exogenously applied L-methionine on sunflower (Helianthus annuus L.) plants grown under water-deficit conditions. Twenty-five-day old seedlings of four sunflower cultivars, FH331, FH572, FH652 and FH623 were exposed to control (100% F.C.) and drought stress (60% F.C.) conditions. After 30-day of drought stress, L-methionine (Met; 20 mg/L) was applied as a foliar spray to control and drought stressed plants. Water deficit stress significantly reduced shoot fresh and dry weights shoot and root lengths, and chlorophyll a content in all four cultivars. While a significant increase was observed due to water deficiency in relative membrane permeability (RMP), malondialdehyde (MDA), total soluble proteins (TSP), total soluble sugars (TSS), ascorbic acid (AsA) and activity of peroxidase (POD). Although, exogenously applied Met was effective in decreasing RMP, MDA and H2O2 contents, it increased the shoot fresh weight, shoot length, chlorophyll a, chlorophyll a/b ratio, proline contents and the activities of SOD, POD and CAT enzymes in all four cultivars under water deficit stress. No change in AsA and total phenolics was observed due to foliar-applied Met under water stress conditions. Of all sunflower cultivars, cv. FH-572 was the highest and cv. FH-652 the lowest of all four cultivars in shoot fresh and dry weights as well as shoot length under drought stress conditions. Overall, foliar applied L-methionine was effective in improving the drought stress tolerance of sunflower plants that was found to be positively associated with Met induced improved growth attributes and reduced RMP, MDA and H2O2 contents under water deficit conditions.


Assuntos
Helianthus/crescimento & desenvolvimento , Metionina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Metabolismo Secundário/efeitos dos fármacos , Ácido Ascórbico/metabolismo , Betaína/metabolismo , Clorofila A/metabolismo , Desidratação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Helianthus/efeitos dos fármacos , Helianthus/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído , Peroxidase/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo
13.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34948045

RESUMO

Salt stress is one of the major significant restrictions that hamper plant development and agriculture ecosystems worldwide. Novel climate-adapted cultivars and stress tolerance-enhancing molecules are increasingly appreciated to mitigate the detrimental impacts of adverse stressful conditions. Sorghum is a valuable source of food and a potential model for exploring and understanding salt stress dynamics in cereals and for gaining a better understanding of their physiological pathways. Herein, we evaluate the antioxidant scavengers, photosynthetic regulation, and molecular mechanism of ion exclusion transporters in sorghum genotypes under saline conditions. A pot experiment was conducted in two sorghum genotypes viz. SSG 59-3 and PC-5 in a climate-controlled greenhouse under different salt concentrations (60, 80, 100, and 120 mM NaCl). Salinity drastically affected the photosynthetic machinery by reducing the accumulation of chlorophyll pigments and carotenoids. SSG 59-3 alleviated the adverse effects of salinity by suppressing oxidative stress (H2O2) and stimulating enzymatic and non-enzymatic antioxidant activities (SOD, APX, CAT, POD, GR, GST, DHAR, MDHAR, GSH, ASC, proline, GB), as well as protecting cell membrane integrity (MDA, electrolyte leakage). Salinity also influenced Na+ ion efflux and maintained a lower cytosolic Na+/K+ ratio via the concomitant upregulation of SbSOS1, SbSOS2, and SbNHX-2 and SbV-Ppase-II ion transporter genes in sorghum genotypes. Overall, these results suggest that Na+ ions were retained and detoxified, and less stress impact was observed in mature and younger leaves. Based on the above, we deciphered that SSG 59-3 performed better by retaining higher plant water status, photosynthetic assimilates and antioxidant potential, and the upregulation of ion transporter genes and may be utilized in the development of resistant sorghum lines in saline regions.


Assuntos
Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Bombas de Íon/metabolismo , Metabolômica/métodos , Sorghum/crescimento & desenvolvimento , Antioxidantes/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Fotossíntese , Proteínas de Plantas/metabolismo , Estresse Salino , Sorghum/genética , Sorghum/metabolismo , Regulação para Cima
14.
Saudi J Biol Sci ; 28(12): 7550-7560, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34867059

RESUMO

One of the most common dyeing problems of textile industries is uneven and faulty dyeing over the finished quality of fabrics due to different reasons. These problems are usually tackled through chemical degradation in which uneven and faulty dye is removed from the surface of fiber but fabric quality is compromised. Chemical process also reduces the strength of the fabric and durability of textile material by reduction in reactive dye ability. The fabric cannot be reused due to the reduced strength. To overcome above mentioned problem, biological method of stripping in which enzymes produced by different micro-organisms are used. This process has no harmful effect on the fabric and is safe for environment. In this research work reactive blue 21 dye with 0.5, 2 and 4% shade strengths was used to dye cotton fabric. The Ganoderma lucidum fungal strains were mutated by UV mutagen, and five were selected for further processing. These mutant strains were grown at temperature ranges (20 °C to 40 °C); pH(3-5); inoculum size(1-5 mL) and fermentation time (3-15 days) . The required nutrients media to produce the ligninolytic enzymes was added to the flask. The strain which gave the fast decolourization results was selected for further optimization. Optimization was done by observing the variables: incubation time 12 days, pH 4, temperature 30 °C, and inoculum size 3 mL by applying Response Surface Methodology (RSM) in Central Composite Design (CCD). During the process of fabric color stripping, the enzyme assay revealed that the respective mutant UV-60 strain produced active enzymes with their Vmax, Mnp (427U/mL), LiP (785U/mL), and Lac (75 U/mL) enzymes decolorized 89% of the dye which is 25% more than the parent strain and also the production of enzyme is Mnp (344U/mL), LiP (693U/mL), and Lac (59 U/mL) enzymes which is lower than mutant strain.

15.
J Hazard Mater ; 416: 125747, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33819645

RESUMO

In this study, water of the channels and ponds that conduct residual water in two most important cities of Saudi Arabia were assessed to ascertain the influence of the population on the occurrence and pollution characteristics of microplastics (MPs) (> 20 µm in size). Riyadh has 7.6 million inhabitants and is an urban city even though also have industry while Al-Jubail has only 0.78 and is the biggest industrial city. MPs showed an average of 3.2 items/L in Riyadh and 0.2 items/L in Al-Jubail showing a statistically significant difference between both cities. Sampling with a Turton Tow Net of 20 µm mesh, fibers were dominant in all sites (60%). MPs size was mainly distributed between 80 and 250 µm (60%), and their major colors were white (40%), red (25%) and blue (20%). Infrared spectral analysis revealed that most of the selected particles were identified as MPs of polypropylene and polyethylene (48.3%). The risk assessment was carried out using both the hazard index (HI) and the pollution load index (PLI). The results showed that, in this case, the decisive index is the PLI since the main difference in the MPs characteristics between the two cities is their concentration.


Assuntos
Microplásticos , Poluentes Químicos da Água , Cidades , Monitoramento Ambiental , Plásticos , Arábia Saudita , Águas Residuárias , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
16.
J Biochem Mol Toxicol ; 35(5): e22746, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33661530

RESUMO

Globally, gastric cancer is one of the leading cause of death. Surgical and chemotherapy constitute an important treatment regimen. Unfortunately, less than 20 persons out of 100 patients are live on almost 5 years. Hence, a nontoxic, effective and significantly enhancing novel therapeutic agent is required. d-Carvone is a natural terpenoid present in the essential oils and abundant in the seeds of caraway, as well as known folk medication for diarrhea, acidity, and other gastric disorders. Nevertheless, the role of d-carvone on gastric cancer and its underlying molecular mechanism resides enigmatic. Cells were treated with d-carvone to find out the IC50 by MTT assay. This study shows that 20 and 25 µM d-carvone has induced the reactive oxygen species production and mitochondrial membrane potential in gastric cancer AGS cells, which were evaluated by 2,7-dichlorofluoresceindiacetate and Rh123 staining methods, respectively. The effect of d-carvone against the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway was studied through immunoblotting. Then, we found that it effectively inhibited the proliferation of cell, and the induction of cell apoptosis was scrutinized by dual, 4',6-diamidino-2-phenylindole, and also propidium iodide staining methods. We also explored the fundamental molecular signaling mechanism of the d-carvone and our data depicts that d-carvone induced apoptosis cell death by mitochondrial reactive oxygen species production and downregulation of the and JAK and STAT3 signaling molecules. These overall findings support that the d-carvone inhibits the JAK/STAT3 signaling pathway and induces cell death in the gastric cancer AGS cells.


Assuntos
Apoptose/efeitos dos fármacos , Monoterpenos Cicloexânicos/farmacologia , Janus Quinases/metabolismo , Proteínas de Neoplasias/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia
17.
Sci Total Environ ; 776: 145843, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33640550

RESUMO

In this study, the occurrence of 12 organophosphorus flame retardants (OPFRs), 64 pesticides, 21 perfluoroalkyl substances (PFASs) and 34 pharmaceuticals and personal care products (PPCPs) in surface water, sediments and vegetation collected from seven locations along the South Riyadh and six locations along the Al-Jubail industrial city (Saudi Arabia) were reported. The median of the concentrations of Æ©OPFRs, Æ©Pesticides, Æ©PFASs and Æ©PPCPs in water was 297, 231, 29.7 and 3794 ng L-1, respectively, in sediments 56.2, 40.4, 5.66 and 419 ng g-1 d.w., in crops for human consumption of 45.6, 42.0, 0.46 and 42.0 ng g-1, in farm crops of 13.4, 57.5, 3.2 and 637 ng g-1, and in natural vegetation of 51.7, 10.3, 1.88 and 1580 ng g-1. Predominant compounds in all matrices were tris-(1,3-dichloro-2-propyl)phosphate (TClPP), acetamiprid, imidacloprid, caffeine, bisphenol A (BPA), diclofenac and ibuprofen. Tris(2-butoxyethyl) phosphate (TBEP), tris-(2-ethylhexyl)phosphate (TPhP), perfluoroctanoic acid (PFOA), perfluoroalkyl sulfonate (PFOS) and paracetamol were also in many samples but at low concentrations. The contaminants' levels showed similar values in both cities. However, pesticide levels were significantly higher in surface water (p < 0.05) and lower in natural vegetation (p < 0.05) of Riyadh than those of Al-Jubail. The risk assessment for the aquatic biota showed that abamectin, diazinon (pesticides), bisphenol A and caffeine (PPCPs) had the highest risk levels. The cumulative risk assessment showed that the contaminant mixture in all water samples is of concern. As far as the risk to human health is concerned, individual contaminants did not show a significant hazard for the population. However, OPFRs and pesticide requires a closed monitoring since % of admissible daily intakes (ADIs) or reference doses (RfD) are high. This is one of the most comprehensive study covering environmental and human risk assessment of emerging contaminants carried out in Saudi Arabia.


Assuntos
Retardadores de Chama , Fluorocarbonos , Praguicidas , Preparações Farmacêuticas , Monitoramento Ambiental , Retardadores de Chama/análise , Humanos , Compostos Organofosforados/análise , Praguicidas/análise , Medição de Risco , Arábia Saudita , Verduras
18.
Plants (Basel) ; 9(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961867

RESUMO

We studied the polyphenol (phenolic compounds and flavonoids) composition and allelopathic effects of Acacia melanoxylon R. Br. aerial foliage aqueous extract (0%, 25%, 50%, 75% and 100%) on the seedling growth and plant biomass of the general biotest species, lettuce (Lactuca sativa). Mean leaf fresh weight, leaf dry weight, root fresh weight and root dry weight were decreased following exposure to Acacia aerial foliage, flowers aqueous extract (AFE) and phyllodes aqueous extract (APE) after 6 days. The reduction in plant dry biomass was more than 50% following treatment with AFE. The decrease in mean root length was approximately 37.7% and 29.20% following treatment with Acacia flowers extract (AFE) at 75% and 100% concentration, respectively. Root dry weight of L. sativa was reduced by both flowers and phyllodes extract. The reduction of protein contents in lettuce leaves following Acacia foliage extract proved that both AFE and APE exhibit polyphenols that causes the toxicity which led to decrease in leaf protein contents. High-Performance Liquid Chromatography (HPLC) was employed to analyze the A. melanoxylon flowers and phyllodes. A total of 13 compounds (accounting for most abundant compounds in flowers and phyllodes) include different flavonoids and phenolic compounds. The phytochemical compounds detected were: Gallic acid, protocatechuic acid, p-hydroxybenzoic acid, p-hydroxybenzaldehyde, vanillic acid, syringic acid, p-coumaric acid, and ferulic acid. The major flavonoid compounds identified include rutin, luteolin, apigenin, and catechin. Allelopathic effects of flower and phyllodes extracts from A. melanoxylon may be due to the presence of above compounds identified by HPLC analysis.

19.
Data Brief ; 31: 105776, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32548223

RESUMO

The data set presents the occurrence of 59 currently used pesticides (CUPs) and 33 pharmaceuticals and personal care products (PPCPs), from wetland areas, in Saudi Arabia, impacted by wastewater discharge. Wetlands are valuable ecosystems, but are very fragile and easily affected by anthropogenic pressure [1], [2], [3], [4], [5], [6]. The occurrence of organic contaminants provides understanding about their fate and possible risk for humans and environment. Up to our knowledge, this is the first report on the occurrence of the mentioned organic pollutants in shallow lakes in Saudi Arabia, and the first time these compounds are analyzed in wild flora. Samples of water, sediment, soil and plants were extracted via ultrasound assisted extraction (UAE) and solid phase extraction (SPE). The compounds determination was performed using ultra-high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). Interpretation and discussion of the present dataset can be found in the article entitled "Pharmaceuticals, pesticides, personal care products and microplastics contamination assessment of Al-Hassa irrigation network (Saudi Arabia) and its shallow lakes"[1].

20.
Physiol Mol Biol Plants ; 26(12): 2435-2452, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33424157

RESUMO

ABSTRACT: Untreated wastewater contains toxic amounts of heavy metals such as chromium (Cr), which poses a serious threat to the growth and physiology of plants when used in irrigation. Though, Cr is among the most widespread toxic trace elements found in agricultural soils due to various anthropogenic activities. To explore the interactive effects of micronutrients with amino acid chelators [iron-lysine (Fe-lys) and zinc-lysine (Zn-lys)], pot experiments were conducted in a controlled environment, using spinach (Spinacia oleracea L.) plant irrigated with tannery wastewater. S. oleracea was treated without Fe and Zn-lys (0 mg/L Zn-lys and 0 mg/L Fe-lys) and also treated with various combinations of (interactive application) Fe and Zn-lys (10 mg/L Zn-lys and 5 mg/L Fe-lys), when cultivated at different levels [0 (control) 33, 66 and 100%) of tannery wastewater in the soil having a toxic level of Cr in it. According to the results, we have found that, high concentration of Cr in the soil significantly (P < 0.05) reduced plant height, fresh biomass of roots and leaves, dry biomass of roots and leaves, root length, number of leaves, leaf area, total chlorophyll contents, carotenoid contents, transpiration rate (E), stomatal conductance (gs), net photosynthesis (PN), and water use efficiency (WUE) and the contents of Zn and Fe in the plant organs without foliar application of Zn and Fe-lys. Moreover, phytotoxicity of Cr increased malondialdehyde (MDA) contents in the plant organs (roots and leaves), which induced oxidative damage in S. oleracea manifested by the contents of hydrogen peroxide (H2O2) and membrane leakage. The negative effects of Cr toxicity could be overturned by Zn and Fe-lys application, which significantly (P < 0.05) increase plant growth, biomass, chlorophyll content, and gaseous exchange attributes by reducing oxidative stress (H2O2, MDA, EL) and increasing the activities of various antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD) catalase (CAT) and ascorbate peroxidase (APX). Furthermore, the supplementation of Zn and Fe-lys increased the contents of essential nutrients (Fe and Zn) and decreased the content of Cr in all plant parts compared to the plants cultivated in tannery wastewater without application of Fe-lys. Taken together, foliar supplementation of Zn and Fe-lys alleviates Cr toxicity in S. oleracea by increased morpho-physiological attributes of the plants, decreased Cr contents and increased micronutrients uptake by the soil, and can be an effective in heavy metal toxicity remedial approach for other crops.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA