Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7121, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531981

RESUMO

Citrus canker is a bacterial disease caused by Xanthomonas citri subsp. citri (Xcc) that affects the citrus industry worldwide. Hrp pili subunits (HrpE), an essential component of Type III secretion system (T3SS) bacteria, play a crucial role in the pathogenesis of Xcc by transporting effector proteins into the host cell and causing canker symptoms. Therefore, development of antibodies that block HrpE can suppress disease progression. In this study, a specific scFv detecting HrpE was developed using phage display technique and characterized using sequencing, ELISA, Western blotting, and molecular docking. In addition, a plant expression vector of pCAMBIA-scFvH6 was constructed and agroinfiltrated into Nicotiana tabacum cv. Samson leaves. The hypersensitive response (HR) in the leaves of transformed and non-transformed plants was evaluated by inoculating leaves with Xcc. After three rounds of biopanning of the phage library, a specific human scFv antibody, named scFvH6, was identified that showed high binding activity against HrpE in ELISA and Western blotting. Molecular docking results showed that five intermolecular hydrogen bonds are involved in HrpE-scFvH6 interaction, confirming the specificity and high binding activity of scFvH6. Successful transient expression of pCAMBIA-scFvH6 in tobacco leaves was verified using immunoassay tests. The binding activity of plant-produced scFvH6 to detect HrpE in Western blotting and ELISA was similar to that of bacterial-produced scFvH6 antibody. Interestingly, tobacco plants expressing scFvH6 showed a remarkable reduction in HR induced by Xcc compared with control plants, so that incidence of necrotic lesions was significantly higher in non-transformed controls (≥ 1.5 lesions/cm2) than in the plants producing scFvH6 (≤ 0.5 lesions/cm2) after infiltration with Xcc inoculum. Our results revealed that the expression of scFvH6 in tobacco leaves can confer resistance to Xcc, indicating that this approach could be considered to provide resistance to citrus bacterial canker disease.


Assuntos
Citrus , Xanthomonas , Humanos , Simulação de Acoplamento Molecular , Xanthomonas/genética , Citrus/microbiologia , Biblioteca Gênica , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo
2.
Transgenic Res ; 31(2): 269-283, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35237898

RESUMO

Citrus bacterial canker, caused by Xanthomonas citri subsp. citri (Xcc), is a major disease of citrus plants, causing a significant loss in the citrus industry. The pthA is a bacterial effector protein mediates protein-protein and protein-DNA interactions and modulates host transcription. Injection of pthA effector protein into the host cell induces the expression of the susceptibility gene CsLOB1 which is required for citrus canker disease development. In this study, we described in planta expression of a specific anti-pthA single-chain variable fragment (scFv) recombinant antibody, scFvG8, and assessed its function using molecular docking, immunoblotting, and indirect enzyme-linked immunosorbent assay (ELISA). Based on the results, homology-based molecular docking suggested that at least eight intermolecular hydrogen bonds are involved in pthA-scFvG8 interactions. Immunoblotting and indirect ELISA results reconfirmed specific binding of scFvG8 to pthA protein. Moreover, gene fragment encoding scFvG8 was cloned into plant expression vector and transiently expressed in leaves of Nicotiana tabacum cv. Samson by agroinfiltration method. Transient expression of scFvG8 (at the expected size of 35 kDa) in N. tabacum leaves was confirmed by western blotting. Also, immunoblotting and indirect ELISA showed that the plant-derived scFvG8 had similar activity to purified scFvG8 antibody in detecting pthA. Additionally, in scFvG8-expressing tobacco leaves challenged with Xcc, a reduction (for up to 70%) of hypersensitive response (HR) possibly via direct interaction with pthA, was observed in the necrotic leaf area compared to control plants infected with empty vector. The results obtained in this study confirm that scFvG8 can suppress the function of pthA effector protein within plant cells, thus the induction of stable expression of scFvG8 in lime trees can be considered as an appropriate approach to confer resistance to Xcc.


Assuntos
Citrus , Xanthomonas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citrus/genética , Simulação de Acoplamento Molecular , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Fatores de Virulência/genética , Xanthomonas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA