Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Front Vet Sci ; 11: 1351693, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681848

RESUMO

Introduction: The utilization of fauna and fauna-based byproducts in ethnomedicinal usages has been a longstanding human activity, practiced across various cultures worldwide. This study focuses on investigating the utilization of animal-based traditional medicine by the people of Pakistan, specifically in the Gujranwala area. Methods: Data collection took place from January to September 2019 through interviews with local communities. Ethnomedicinal applications of animal products were analyzed using several indices, including Relative Frequency of Citation (RFC), Relative Popularity Level (RPL), Folk Use Value (FL), and Relative Occurrence Percentage (ROP). Results: The study identified the use of different body parts of 54 species of animals in treating various diseases and health issues. These include but are not limited to skin infections, sexual problems, pain management (e.g., in the backbone and joints), eyesight issues, immunity enhancement, cold, weakness, burns, smallpox, wounds, poisoning, muscular pain, arthritis, diabetes, fever, epilepsy, allergies, asthma, herpes, ear pain, paralysis, cough, swelling, cancer, bronchitis, girls' maturity, and stomach-related problems. Certain species of fauna were noted by informers with high "frequency of citation" (FC), ranging from 1 to 77. For instance, the black cobra was the most frequently cited animal for eyesight issues (FC = 77), followed by the domestic rabbit for burn treatment (FC = 67), and the Indus Valley spiny-tailed ground lizard for sexual problems (FC = 66). Passer domesticus and Gallus gallus were noted to have the highest ROP value of 99. Discussion: The findings of this study provide valuable preliminary insights for the conservation of fauna in the Gujranwala region of Punjab, Pakistan. Additionally, screening these animals for medicinally active compounds could potentially lead to the development of novel animal-based medications, contributing to both traditional medicine preservation and modern pharmaceutical advancements.

2.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38675405

RESUMO

This research's scope encompassed biotechnological, phytochemical, and biological studies of Schisandra henryi, including investigations into its in vitro microshoot culture grown in PlantForm bioreactors (temporary immersion systems, TISs), as well as extracts from leaves of the parent plant, focusing on anti-inflammatory, antioxidant, anticancer, and antimicrobial activities. The phytochemical analysis included the isolation and quantification of 17 compounds from dibenzocyclooctadiene, aryltetralin lignans, and neolignans using centrifugal partition chromatography (CPC), HPLC-DAD, and UHPLC-MS/MS tandem mass spectrometry with triple quadrupole mass filter methods. Higher contents of compounds were found in microshoots extracts (max. 543.99 mg/100 g DW). The major compound was schisantherin B both in the extracts from microshoots and the leaves (390.16 and 361.24 mg/100 g DW, respectively). The results of the anti-inflammatory activity in terms of the inhibition of COX-1, COX-2, sPLA2, and LOX-15 enzymes indicated that PlantForm microshoot extracts showed strong activity against COX-1 and COX-2 (for 177 mg/mL the inhibition percentage was 76% and 66%, respectively). The antioxidant potential assessed using FRAP, CUPRAC, and DPPH assays showed that extracts from microshoot cultures had 5.6, 3.8, and 3.3 times higher power compared to extracts from the leaves of the parent plant, respectively. The total polyphenol content (TPC) was 4.1 times higher in extracts from the in vitro culture compared to the leaves. The antiproliferative activity against T-cell lymphoblast line Jurkat, breast adenocarcinoma cultures (MCF-7), colon adenocarcinoma (HT-29), and cervical adenocarcinoma (HeLa), showed that both extracts have considerable effects on the tested cell lines. The antimicrobial activity tested against strains of Gram-positive and Gram-negative bacteria and fungi showed the highest activity towards H. pylori (MIC and MBC 0.625 mg/mL).

3.
Heliyon ; 10(1): e23648, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38187271

RESUMO

The cotton mealybug, Phenacoccus solenopsis Tinsley and papaya mealybug, Paracoccus marginatus Williams and Granara de Willink (Hemiptera: Pseudococcidae) are becoming major threats to the production of Gymnema sylvestre R. Br. (Asclepiadaceae) in India. Management mainly depends on chemical insecticides which cause a serious problem of pesticide residue and insecticide resistance. The use of biorational insecticides such as biopesticides, botanicals, insect growth regulators, and microbial insecticides is important components of an Integrated Pest Management (IPM) program for successful management. We evaluated the bio-efficacy of twelve biorational insecticides, including entomopathogenic fungi (EPF), using the leaf spray method in laboratory conditions at 25 ± 1 °C, 70 % ± 5 % RH. The results revealed that the highest percent mortality was recorded by acetamiprid 20 % SP (100.00 %), followed by azadirachtin (98.27 %), Lecanicillium muscarium (2 × 109 spores/mL) (85.70 %) and Ocimum sanctum leaf extract (76.87 %) at 120 h after treatment (HAT) in P. solenopsis. In P. marginatus, 100.00 %, 96.39 % and 85.67 % and 74.90 % mortalities were achieved by acetamiprid 20 % SP, azadirachtin, L. muscarium (2 × 109 spores/mL) and O. sanctum leaf extract, respectively, at 120 HAT during the first spray. Various biorational insecticides showed a more or less similar trend of percent mortality in both species during the second spray. In both species, the lowest percent mortality was recorded by Andrographis paniculata leaf extract (46.29, 44.54) and (41.03, 46.39) at 120 Hours after treatment in the first and second spray, respectively. It was concluded that all the prescribed treatments are more effective than the control. Overall, azadirachtin recorded the highest percent mortality after acetamiprid and had the shortest LT50 (12.52 h) and (13.87 h) values in P. solenopsis and P. marginatus, respectively. Our study emphasizes that biopesticides like Azadirachtin 1 % EC (10000 ppm), L. muscarium (2 × 109 spores/mL) (5 mL/L) and O. sanctum leaf extract (5 %) may be recommended as alternatives to synthetic insecticides. Botanicals and EPF would be the most effective approach for sustainable integrated management of P. solenopsis and P. marginatus in the G. sylvestre ecosystem.

4.
Plant Physiol Biochem ; 206: 108171, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029614

RESUMO

Lead (Pb) is thought to be one of most injurious metals on the earth. Lead stress in plants enhances synthesis of highly toxic reactive oxygen species (ROS). During present research, impact of calcium-oxide nanoparticles (CaO-NPs) was observed on antioxidative defense mechanism in Abelmoschus esculentus plants prone to Pb stress. A CRD experiment was employed with 5 replicates having four treatments (T0 = Control, T1 = Pb stress (200 ppm), T2 = CaO-NPs and T3 = Pb + CaO-NPs). Pb-stressed seedlings exhibited decreased root growth, shoot growth, chlorophyll concentration and biomass accumulation. Moreover, higher synthesis of hydrogen-peroxide (H2O2), malondialdehyde (MDA) and electrolyte leakage (EL) resulting in cellular injuries were noted in plants growing in Pb spiked conditions. Similarly, stressed plants showed higher accumulation of total soluble sugar and proline content besides elevated activity of antioxidative enzymes counting catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR) and ascorbate peroxidase (APX). On the contrary side, CaO-NPs alleviated the Pb induced phytotoxicity through improving activity of antioxidative enzymes. The elevated activity of antioxidant enzymes reduced biosynthesis of H2O2 and MDA which was revealed through the increased growth parameters. In addition, CaO-NPs persuaded enhancement in plant defence machinery by decreased chlorophyll deprivation and augmented the uptake of plant nutrients including K and Ca content. Hence, CaO-NPs can be potent regulators of the antioxidative enzymes and stress markers to ameliorate abiotic stresses.


Assuntos
Abelmoschus , Compostos de Cálcio , Nanopartículas , Óxidos , Antioxidantes/metabolismo , Abelmoschus/metabolismo , Peróxido de Hidrogênio , Chumbo , Estresse Oxidativo , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Clorofila , Plântula/metabolismo
5.
Molecules ; 28(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446788

RESUMO

Oxidative stress and chronic inflammation interplay with the pathogenesis of cancer. Breast cancer in women is the burning issue of this century, despite chemotherapy and magnetic therapy. The management of secondary complications triggered by post-chemotherapy poses a great challenge. Thus, identifying target-specific drugs with anticancer potential without secondary complications is a challenging task for the scientific community. It is possible that green technology has been employed in a greater way in order to fabricate nanoparticles by amalgamating plants with medicinal potential with metal oxide nanoparticles that impart high therapeutic properties with the least toxicity. Thus, the present study describes the synthesis of Titanium dioxide nanoparticles (TiO2 NPs) using aqueous Terenna asiatica fruit extract, with its antioxidant, anti-inflammatory and anticancer properties. The characterisation of TiO2 NPs was carried out using a powdered X-ray diffractometer (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray diffraction (EDX), high-resolution transmission electron microscopy (HR-TEM), dynamic light scattering (DLS), and zeta-potential. TiO2 NPs showed their antioxidant property by scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals in a dose-dependent manner with an IC50 value of 80.21 µg/µL. To ascertain the observed antioxidant potential of TiO2 NPs, red blood cells (RBC) were used as an in vitro model system. Interestingly, TiO2 NPs significantly ameliorated all the stress parameters, such as lipid peroxidation (LPO), protein carbonyl content (PCC), total thiol (TT), superoxide dismutase (SOD), and catalase (CAT) in sodium nitrite (NaNO2)-induced oxidative stress, in RBC. Furthermore, TiO2 NPs inhibited RBC membrane lysis and the denaturation of both egg and bovine serum albumin, significantly in a dose-dependent manner, suggesting its anti-inflammatory property. Interestingly, TiO2 NPs were found to kill the MCF-7 cells as a significant decrease in cell viability of the MCF-7 cell lines was observed. The percentage of growth inhibition of the MCF-7 cells was compared to that of untreated cells at various doses (12.5, 25, 50, 100, and 200 µg/mL). The IC50 value of TiO2 NPs was found to be (120 µg/mL). Furthermore, the Annexin V/PI staining test was carried out to confirm apoptosis. The assay indicated apoptosis in cancer cells after 24 h of exposure to TiO2 NPs (120 µg/mL). The untreated cells showed no significant apoptosis in comparison with the standard drug doxorubicin. In conclusion, TiO2 NPs potentially ameliorate NaNO2-induced oxidative stress in RBC, inflammation and MCF-7 cells proliferation.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Humanos , Feminino , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Carbonilação Proteica , Estresse Oxidativo , Nanopartículas Metálicas/química , Inflamação , Proliferação de Células
6.
Plants (Basel) ; 12(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36771746

RESUMO

Appropriate water management practices are essential for the successful cultivation of chia in water-scarce situations of semiarid regions. This is highly essential when new crops such as chia are introduced for ensuring diversity and water saving. Therefore, field trials (2020-21 and 2021-22) were conducted to understand the impact of deficit irrigation and bioregulators (BRs) on the seed yield, water productivity, and oil quality of chia. The effect of foliar application of BRs such as thiourea (TU; 400 ppm), salicylic acid (SA; 1.0 mM), potassium nitrate (KN; 0.15%), potassium silicate (KS; 100 ppm), kaolin (KO; 5%), and sodium benzoate (SB; 200 ppm) were monitored at different levels of irrigation: 100 (I100), 75 (I75), 50 (I50), and 25 (I25) percent of cumulative pan evaporation (CPE). Deficit irrigation at I25, I50, and I75 led to 55.3, 20.1, and 3.3% reductions in seed yield; 42.5, 22.5, and 4.2% in oil yield; and 58.9, 24.5, and 5.7% in omega-3 yield, respectively, relative to I100. Bioregulators could reduce the adverse impact of water deficit stress on seed, oil, and omega-3 yield. However, their beneficial effect was more conspicuous under mild water stress (I75), as revealed by higher seed yield (4.3-6.9%), oil yield (4.4-7.1%), and omega-3 yield (4.7-8.5%) over control (I100 + no BRs). Further, BRs (KN, TU, and SA) maintained oil quality in terms of linolenic acid and polyunsaturated fatty acid contents, even under mild stress (I75). Foliar application of KN, TU, and SA could save water to an extent of 36-40%. Therefore, the adverse impact of deficit irrigation on seed, oil, and omega-3 yields of chia could be minimized using BRs such as KN, TU, and SA, which can also contribute to improved water productivity.

7.
Molecules ; 27(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36234802

RESUMO

In the current study, soil samples were gathered from different places where petrol and diesel filling stations were located for isolation of photosynthetic bacteria under anaerobic conditions using the paraffin wax-overlay pour plate method with Biebl and Pfennig's medium. The three isolated strains were named Rhodopseudomonas palustris SMR 001 (Mallapur), Rhodopseudomonas palustris NR MPPR (Nacahram) and Rhodopseudomonas faecalis N Raju MPPR (Karolbagh). The morphologies of the bacteria were examined with a scanning electron microscope (SEM). The phylogenetic relationship between R. palustris strains was examined by means of 16S rRNA gene sequence analysis using NCBI-BLAST search and a phylogenetic tree. The sequenced data for R. palustris were deposited with the National Centre for Biotechnology Research (NCBI). The total amino acids produced by the isolated bacteria were determined by HPLC. A total of 14 amino acids and their derivatives were produced by the R. palustris SMR 001 strain. Among these, carnosine was found in the highest concentration (8553.2 ng/mL), followed by isoleucine (1818.044 ng/mL) and anserine (109.5 ng/mL), while R. palustris NR MPPR was found to produce 12 amino acids. Thirteen amino acids and their derivatives were found to be produced from R. faecalis N Raju MPPR, for which the concentration of carnosine (21601.056 ng/mL) was found to be the highest, followed by isoleucine (2032.6 ng/mL) and anserine (227.4 ng/mL). These microbes can be explored for the scaling up of the process, along with biohydrogen and single cell protein production.


Assuntos
Aminoácidos , Carnosina , Aminoácidos/genética , Anserina , Isoleucina , Parafina , Filogenia , RNA Ribossômico 16S/genética , Rodopseudomonas , Solo
8.
Molecules ; 27(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014400

RESUMO

The present study describes the green biofunctional synthesis of magnesium oxide (MgO) nanoparticles using the aqueous Tarenna asiatica fruit extract. The characterization of Tarenna asiatica fruit extract MgO nanoparticles (TAFEMgO NPs) was achieved by X-ray powder diffraction, UV-Vis spectroscopy, FTIR, TEM, SEM, and energy-dispersive X-ray diffraction. TAFEMgO NPs scavenged the DPPH free radicals with an IC50 value of 55.95 µg/µL, and it was highly significant compared to the standard. To authenticate the observed antioxidant potential of TAFEMgO NPs, oxidative stress was induced in red blood cells (RBC) using sodium nitrite (NaNO2). Interestingly, TAFEMgO NPs ameliorated the RBC damage from oxidative stress by significantly restoring the stress parameters, such as the protein carbonyl content (PCC), lipid peroxidation (LPO), total thiol (TT), super-oxide dismutase (SOD), and catalase (CAT). Furthermore, oxidative stress was induced in-vivo in Sprague Dawley female rats using diclofenac (DFC). TAFEMgO NPs normalized the stress parameters in-vivo and minimized the oxidative damage in tissues. Most importantly, TAFEMgO NPs restored the function and architecture of the damaged livers, kidneys, and small intestines by regulating biochemical parameters. TAFEMgO NPs exhibited an anticoagulant effect by increasing the clotting time from 193 s in the control to 885 s in the platelet rich plasma. TAFEMgO NPs prolonged the formation of the clot process in the activated partial thromboplastin time and the prothrombin time, suggest the effective involvement in both intrinsic and extrinsic clotting pathways of the blood coagulation cascade. TAFEMgO NPs inhibited adenosine di-phosphate (ADP)-induced platelet aggregation. TAFEMgO NPs did not show hemolytic, hemorrhagic, and edema-inducing properties at the tested concentration of 100 mg/kgbody weight, suggesting its non-toxic property. In conclusion, TAFEMgO NPs mitigates the sodium nitrite (NaNO2)- and diclofenac (DFC)-induced stress due to oxidative damage in both in vitro and in vivo experimental models.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Trombose , Animais , Diclofenaco/farmacologia , Feminino , Óxido de Magnésio/química , Óxido de Magnésio/farmacologia , Nanopartículas Metálicas/química , Nanopartículas/química , Estresse Oxidativo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Carbonilação Proteica , Ratos , Ratos Sprague-Dawley , Nitrito de Sódio/farmacologia
9.
Molecules ; 27(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897929

RESUMO

We confined the formation and characterization of heterogenous nano-catalysts and then used them to produce biodiesel from the novel non-edible seed oil of Prunus aitchisonii. P. aitchisonii seeds' oil content was extracted at about 52.4 ± 3% with 0.77% FFA. Three different heterogenous nano-catalysts-calcined (CPC), KPC, and KOH-activated P. aitchisonii cake Titanium Dioxide (TiO2)-were synthesized using calcination and precipitation methods. The mentioned catalysts were characterized through XRD, SEM, and EDX to inspect their crystallin dimension, shape, and arrangement. Titanium dioxide has morphological dimensions so that the average particle size ranges from 49-60 nm. The result shows that the crystal structure of TiO2 is tetragonal (Anatase). The surface morphology of CPC illustrated that the roughness of the surface was increased after calcination, many macropores and hollow cavities appeared, and the external structure became very porous. These changes in morphology may increase the catalytic efficiency of CPC than non-calcined Prunus aitchisonii oil cake. The fuel belonging to PAOB stood according to the series suggested by ASTM criteria. All the characterization reports that P. aitchisonii is a novel and efficient potential source of biodiesel as a green energy source.


Assuntos
Prunus armeniaca , Prunus , Biocombustíveis/análise , Catálise , Óleos de Plantas/química , Prunus/química , Sementes/química
10.
Antioxidants (Basel) ; 11(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35739952

RESUMO

Aconitum chasmanthum Stapf ex Holmes, an essential and critically endangered medicinal plant from Kashmir Himalayas, was studied for its antioxidant and antifungal properties. The shade-dried powdered rhizome was extracted sequentially with hexane, ethyl acetate, and methanol. These subsequent fractions were evaluated for total phenolic content (TPC); total flavonoid content (TFC); antioxidant assays, such as 1,1-diphenyl 1-2-picryl-hydrazyl (DPPH); ferric-reducing antioxidant power (FRAP); superoxide radical scavenging (SOR); hydroxyl radical scavenging (OH) and antifungal activity using the poisoned food technique. Highest TPC (5.26 ± 0.01 mg/g) and TFC (2.92 ± 0.04 mg/g) were reported from methanolic extracts. The highest values of radical scavenging activities were also observed in methanolic extracts with IC50 values of 163.71 ± 2.69 µg/mL in DPPH, 173.69 ± 4.91 µg/mL in SOR and 159.64 ± 2.43 µg/mL in OH. The chemical profile of ethyl acetate extract was tested using HR-LCMS. Methanolic extracts also showed a promising inhibition against Aspergillus niger (66.18 ± 1.03), Aspergillus flavus (78.91 ± 1.19) and Penicillium notatum (83.14 ± 0.97) at a 15% culture filtrate concentration with minimum inhibitory concentration (MIC) values of 230 µg/mL, 200 µg/mL and 190 µg/mL, respectively. Overall, the methanolic fractions showed significant biological potential, and its pure isolates might be used to construct a potential new medicinal source.

11.
PLoS One ; 17(3): e0265028, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35349579

RESUMO

The present study was carried out to document traditional ethnobotanical knowledge (TEK) of herbal flora of District Bhimber, Azad Jammu and Kashmir (AJK), Pakistan to explore medicinal potential of wild indigenous plants (WIPs) for drug discovery. The research data was conducted during years 2015-2017 using questionnaire proforma employing structured and semi-structured interview models. The informants belonged from indigenous communities comprising of both genders with age ranging from 35-105 years. The interviews were conducted using local translator or guide who knew the dialects of all local languages. The study produced ethnobotanical inventory of 173 herbal species belonging to 45 families and out of these Poaceae was dominant family with 27 species. It was explored that maximum herbal species depicted multi-usage especially food, fodder and fuel. Among 173 herbal plant species, 69% species were used as fodder, 72% species as fuel source, 9.8% as ethnoveterinary medicines, 16% for home construction, 12% for cosmetics, 5.2% as honeybee plants and 2.7% were used as fiber source by the local people. Many local plants have been in promulgation for cure of different diseases in traditional cultures such as for cure of stomach problems, cough, cancer, jaundice, kidney diseases, diabetes, snake biting and tooth problems. Different parts of plants such as leaf, root, stem bark, flower, seed and gums are used for the treatment of different diseases by the local people. The major aliments being cured are classified into 12 disease categories by using informant consensus factor (ICF) protocol. According to ICF, the highest numbers of plant species were used against wound healing, snake bite, skin diseases, eye diseases and asthma. Fidelity level (FL) was assessed to check the reliability and use consistency of herbal drugs by the indigenous communities of the study area. The use value index (UVI) of different herb species ranged from 0.29 to 0.57 while the highest value was calculated for Alternanthera pungens L. (UVI: 0.57). Relative frequency of citation (RFC) value was calculated on the bases of the response of the interviewees recorded during survey in correlation with authenticating of traditional data. The RFC values represented the relative popularity of individual species in study area according to their use values. The highest value was calculated for Alternanthera pungens L. (0.90) and followed by Achyranthes aspera L. (0.80. The study reveals that many species are known for commonly used in traditional ethnomedicines (TEMs). Due to different biotic and abiotic factors in conjunction with climatic changes many herbal flora of Shiwalik mountain range (SMR) of District Bhimber of AJK is under threat. The factors like habitat loss, overgrazing, construction of communication infrastructure, silviculture practices, shelter construction (houses) and other more domestic use of wild land by clearing wild lands are boosting towards plant biodiversity loss. There is dare need to work on comprehensive exploration of TEMs to discover neo drugs from wild indigenous plants and do work for conservation of wild flora of the area for future generations.


Assuntos
Plantas Medicinais , Mordeduras de Serpentes , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Etnobotânica/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Paquistão , Fitoterapia , Folhas de Planta , Plantas Medicinais/química , Reprodutibilidade dos Testes
12.
Molecules ; 26(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34885934

RESUMO

The present study aimed to analyze the phytoconstituents of Neptunia triquetra (Vahl) Benth. Anti-inflammatory and hepatoprotective activities of ethanol (EE), chloroform (CE) and dichloromethane (DCME) of stem extracts were evaluated using in vivo experimental models. The extracts were analyzed for phytoconstituents using GC-HRMS. Anti-inflammatory activity of CE, EE and DCME was accessed using carrageenan-induced paw oedema, cotton pellet-induced granuloma and the carrageenan-induced air-pouch model in Wistar albino rats. The hepatotoxicity-induced animal models were investigated for the biochemical markers in serum (AST, ALT, ALP, GGT, total lipids and total protein) and liver (total protein, total lipids, GSH and wet liver weight). In the in vivo study, animals were divided into different groups (six in each group) for accessing the anti-inflammatory and hepatoprotective activity, respectively. GC-HRMS analysis revealed the presence of 102 compounds, among which 24 were active secondary metabolites. In vivo anti-inflammatory activity of stem extracts was found in the order: indomethacin > chloroform extract (CE) > dichloromethane extract (DCME) > ethanolic extract (EE), and hepatoprotective activity of stem extracts in the order: CE > silymarin > EE > DCME. The results indicate that N. triquetra stem has a higher hepatoprotective effect than silymarin, however the anti-inflammatory response was in accordance with or lower than indomethacin.


Assuntos
Anti-Inflamatórios/química , Fabaceae/química , Extratos Vegetais/química , Substâncias Protetoras/química , Metabolismo Secundário , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Edema/tratamento farmacológico , Fabaceae/metabolismo , Fígado/efeitos dos fármacos , Masculino , Metaboloma , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Substâncias Protetoras/metabolismo , Substâncias Protetoras/farmacologia , Ratos
13.
Molecules ; 26(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34770754

RESUMO

Melon fly (Bactrocera cucurbitae) is the most common pest of cucurbits, and it directly causes damage to cucurbit fruits in the early developmental stage. The infection of fruit tissues induces oxidative damage through increased generation of cellular reactive oxygen species. The effects of melon fly infestation on the production of defensive enzymes and antioxidant capabilities in five cucurbit species, namely, bottle gourd, chayote, cucumber, snake gourd, and bitter gourd, were investigated in this study. The total phenolic and flavonoid content was considerably higher in melon fly infestation tissues compared to healthy and apparently healthy tissues. The chayote and bottle gourd tissues expressed almost 1.5- to 2-fold higher phenolic and flavonoid contents compared to the tissues of bitter gourd, snake gourd, and cucumber upon infestation. Defensive enzymes, such as peroxidase (POD), superoxide dismutase (SOD), polyphenol oxidase (PPO), and catalase (CAT), were high in healthy and infected tissues of chayote and bottle gourd compared to bitter gourd, snake gourd, and cucumber. The activity of POD (60-80%), SOD (30-35%), PPO (70-75%), and CAT (40-50%) were high in infected chayote and bottle gourd tissue, representing resistance against infestation, while bitter gourd, snake gourd, and cucumber exhibited comparatively lower activity suggesting susceptibility to melon fly infection. The antioxidant properties were also high in the resistant cucurbits compared to the susceptible cucurbits. The current research has enlightened the importance of redox-regulatory pathways involving ROS neutralization through infection-induced antioxidative enzymes in host cucurbit resistance. The melon fly infestation depicts the possible induction of pathways that upregulate the production of defensive enzymes and antioxidants as a defensive strategy against melon fly infestation in resistant cucurbits.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Cucurbita/química , Cucurbita/enzimologia , Tephritidae/efeitos dos fármacos , Animais , Cucurbita/genética , Cucurbita/parasitologia , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Parasita , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo
14.
Foods ; 10(10)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34681531

RESUMO

Brown seaweeds have shown high potential of bioactivity and provide health benefits as an important functional food ingredient. Therefore, four abundantly growing tropical brown seaweeds-Iyengaria stellata, Spatoglossum asperum, Sargassum linearifolium, and Stoechospermum polypodioides-were collected from the Saurashtra Coast of the Arabian Sea. They were analyzed for metabolite profiling, biochemical activities (including total antioxidant, reducing, scavenging, and anti-proliferative characteristics), and total phenolic and flavonoid contents. A concentration-dependent antioxidant, reducing, and scavenging activities were observed for all four brown seaweeds. The S. asperum and I. stellata extracts showed maximum total antioxidant activity. S. asperum also showed high scavenging and reducing activities compared to other studied brown seaweeds. Further, S. asperum contained high total phenolic and flavonoid content compared to other brown seaweeds collected from the same coast. A multivariate correlation study confirmed a positive correlation between total phenolic and flavonoid contents, and biochemical activities (total antioxidant, scavenging and reducing) for all brown seaweeds. About 35% anti-proliferative activity was observed with S. asperum extract on Huh7 cells; in contrast S. polypodioide showed about 44% proliferation inhibition of Huh7 cells. Similarly, 26% proliferation inhibition of HeLa cells was observed with S. asperum extract. Overall, S. asperum possesses high total flavonoid and phenolic amounts, and showed potential antioxidant, scavenging and reducing characteristics. The study confirmed the nutraceutical potential of S. asperum and that it could be a promising functional food ingredient.

15.
Saudi J Biol Sci ; 28(6): 3453-3460, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34121884

RESUMO

Crop growth largely depends on radiation. Radiation is the main impetus for photosynthesis and movement of photosynthates from source to sink. Therefore, identification of the optimum sowing windows and suitable cultivars for efficient utilization of radiation is of prime importance. A field study was conducted in red clay soil during 2014 and 2015 Kharif season and the treatments consisted of three genotypes and three sowing windows by using randomized complete block design with three replications. The effect of genotypes and sowing windows was found significant with respect to number of trifoliate leaves, leaf area ratio, dry matter production, grain numbers, pod length, test weight, grain yield, and stover yield of guar during 2014 as compared to 2015 sown crop. Statistically significant plant height, number of trifoliate leaves, number of branches, leaf area ratio, absolute growth rate, leaf area index, dry matter, grain number, pod length, grain yield, stover yield and a higher cumulative radiation interception were recorded with 15th August sown crop as compared to other sowing windows. The plant height, number of trifoliate leaves, number of branches, leaf area ratio, absolute growth rate, leaf area index, dry matter, grain number, pod length, grain yield, stover yield and maximum cumulative interception of radiation were significant with RGC-1003 as compared to RGC-936 and HG-365. It is observed that the incident PAR to dry matter accumulation conversion efficiency was varied with cultivars and different sowing windows which ranges from 0.74 g MJ-1 to 0.79 g MJ-1.

16.
Plants (Basel) ; 10(3)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673698

RESUMO

Comparative estimations of the antioxidant activity of methanolic extracts from biomasses of different types of in vitro cultures of Cistus × incanus, Verbena officinalis, Scutellaria lateriflora, and S. baicalensis and also from plant raw materials were performed. The antioxidant measurements were based on the modern assays-cupric ion reducing antioxidant capacity (CUPRAC) and quick, easy, new, cheap, and reproducible CUPRAC (QUENCHER-CUPRAC). The total extractable antioxidants (CUPRAC assay) ranged from 10.4 to 49.7 mmol (100 g)-1 of dry weight (DW) expressed as Trolox equivalent antioxidant capacity (TEAC), and the global antioxidant response (QUENCHER-CUPRAC assay) ranged from 16.0 to 79.1 mmol (100 g)-1 DW for in vitro cultures, whereas for plant raw materials the total extractable antioxidants ranged from 20.9 to 69.5 mmol (100 g)-1 DW, and the global antioxidant response ranged from 67.2 to 97.8 mmol (100 g)-1 DW. Finally, the in vitro cultures could be regarded as an antioxidant-rich alternative resource for the pharmaceutical, health food and cosmetics industries.

17.
Molecules ; 25(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260609

RESUMO

Callus, suspension and bioreactor cultures of Verbena officinalis were established, and optimized for biomass growth and production of phenylpropanoid glycosides, phenolic acids, flavonoids and iridoids. All types of cultures were maintained on/in the Murashige and Skoog (MS) media with 1 mg/L BAP and 1 mg/L NAA. The inoculum sizes were optimized in callus and suspension cultures. Moreover, the growth of the culture in two different types of bioreactors-a balloon bioreactor (BB) and a stirred-tank bioreactor (STB) was tested. In methanolic extracts from biomass of all types of in vitro cultures the presence of the same metabolites-verbascoside, isoverbascoside, and six phenolic acids: protocatechuic, chlorogenic, vanillic, caffeic, ferulic and rosmarinic acids was confirmed and quantified by the HPLC-DAD method. In the extracts from lyophilized culture media, no metabolites were found. The main metabolites in biomass extracts were verbascoside and isoverbascoside. Their maximum amounts in g/100 g DW (dry weight) in the tested types of cultures were as follow: 7.25 and 0.61 (callus), 7.06 and 0.48 (suspension), 7.69 and 0.31 (BB), 9.18 and 0.34 (STB). The amounts of phenolic acids were many times lower, max. total content reached of 26.90, 50.72, 19.88, and 36.78 mg/100 g DW, respectively. The highest content of verbascoside and also a high content of isoverbascoside obtained in STB (stirred-tank bioreactor) were 5.3 and 7.8 times higher than in extracts from overground parts of the parent plant. In the extracts from parent plant two iridoids-verbenalin and hastatoside, were also abundant. All investigated biomass extracts and the extracts from parent plant showed the antiproliferative, antioxidant and antibacterial activities. The strongest activities were documented for the cultures maintained in STB. We propose extracts from in vitro cultured biomass of vervain, especially from STB, as a rich source of bioactive metabolites with antiproliferative, antioxidant and antibacterial properties.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Glucosídeos/farmacologia , Hidroxibenzoatos/farmacologia , Larva/crescimento & desenvolvimento , Fenóis/farmacologia , Verbena/química , Animais , Artemia/efeitos dos fármacos , Artemia/crescimento & desenvolvimento , Biomassa , Reatores Biológicos/microbiologia , Proliferação de Células , Larva/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Extratos Vegetais/farmacologia
18.
Plants (Basel) ; 9(9)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847047

RESUMO

Frangula alnus and Peganum harmala populations growing in Saudi Arabia might be rich sources of natural compounds with important biological activities. A high performance liquid chromatography diode array revealed several polyphenols in the leaf extracts for the first time, including p-coumaric acid, rosmarinic acid, chlorogenic acid, ferulic acid, quercitrin, rutoside, quercetin and trifolin in F. alnus; and hydrocaffeic acid, protocatechuic acid, rosmarinic acid, caffeic acid and cynaroside in P. harmala. F. alnus and P. harmala showed strong antioxidant effects attributed to the polyphenolic composition of leaves and reduction of reactive oxygen species (ROS) accumulation. F. alnus and P. harmala leaf extracts showed cytotoxic effects against Jurkat, MCF-7, HeLa, and HT-29 cancer cells using MTT and flow cytometry assays. These activities were attributed to the polyphenolic composition of leaves including quercitrin, trifolin and cymaroside, as well as the activation of caspase family enzymes 2, 6, 8 and 9 in treated cancer cells compared to control. The current findings of this study include a novel comprehensive investigation on the polyphenol composition and anticancer effects of leaf extracts of F. alnus and P. harmala from natural populations in Saudi Arabia.

19.
Plants (Basel) ; 9(7)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709119

RESUMO

Acacia saligna and Lawsonia inermis natural populations growing in Northern Saudi Arabia might be a valuable source of polyphenols with potent biological activities. Using high-performance liquid chromatography-diode array detection (HPLC-DAD), several polyphenols were detected tentatively in considerable amounts in the methanolic leaf extracts of A. saligna and L. inermis. A. saligna mainly contained rutoside, hyperoside, quercetin 3-glucuronide, gallic acid and p-coumaric acid, whereas those of L. inermis contained apigenin 5-glucoside, apigetrin and gallic acid. Strong antioxidant activities were found in the leaf extracts of both species due to the presence of hyperoside, quercetin 3-glucuronide, gallic acid, isoquercetin, p-coumaric acid, quercitrin and rutoside. A. saligna and L. inermis leaf extracts as well as hyperoside, apigenin 5-glucoside, and quercetin 3-glucuronide significantly reduced reactive oxygen species accumulation in all investigated cancer cells compared to the control. Methanolic leaf extracts and identified polyphenols showed antiproliferative and cytotoxic activities against cancer cells, which may be attributed to necrotic cell accumulation during apoptotic periods. Antibacterial activities were also found in both species leaf extracts and were twice as high in A. saligna than L. inermis due to the high composition of rutoside and other polyphenols. Finally, strong antifungal activities were detected, which were associated with specific phenols such as rutoside, hyperoside, apigenin 5-glucoside and p-coumaric acid. This is the first study exploring the polyphenolic composition of A. saligna and L. inermis natural populations in northern Saudi Arabia and aiming at the detection of their biological activities.

20.
Antioxidants (Basel) ; 9(1)2020 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-31947957

RESUMO

The heavy metal contamination in plant-soil environment has increased manifold recently. In order to reduce the harmful effects of metal stress in plants, the application of beneficial soil microbes is gaining much attention. In the present research, the role of Serratia marcescens BM1 in enhancing cadmium (Cd) stress tolerance and phytoremediation potential of soybean plants, was investigated. Exposure of soybean plants to two Cd doses (150 and 300 µM) significantly reduced plant growth, biomass, gas exchange attributes, nutrients uptake, antioxidant capacity, and the contents of chlorophyll, total phenolics, flavonoids, soluble sugars, and proteins. Additionally, Cd induced the stress levels of Cd, proline, glycine betaine, hydrogen peroxide, malondialdehyde, antioxidant enzymes (i.e., catalase, CAT; ascorbate peroxidase, APX; superoxide dismutase, SOD; peroxidise, POD), and the expression of stress-related genes (i.e., APX, CAT, Fe-SOD, POD, CHI, CHS, PHD2, VSO, NR, and P5CS) in soybean leaves. On the other hand, inoculation of Cd-stressed soybean plants with Serratia marcescens BM1 significantly enhanced the plant growth, biomass, gas exchange attributes, nutrients uptake, antioxidant capacity, and the contents of chlorophyll, total phenolics, flavonoids, soluble sugars, and proteins. Moreover, Serratia marcescens BM1 inoculation reduced the levels of cadmium and oxidative stress markers, but significantly induced the activities of antioxidant enzymes and the levels of osmolytes and stress-related genes expression in Cd-stressed plants. The application of 300 µM CdCl2 and Serratia marcescens triggered the highest expression levels of stress-related genes. Overall, this study suggests that inoculation of soybean plants with Serratia marcescens BM1 promotes phytoremediation potential and Cd stress tolerance by modulating the photosynthetic attributes, osmolytes biosynthesis, antioxidants machinery, and the expression of stress-related genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA