Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(6): 3409-3419, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38713166

RESUMO

Plants undergo substantial biomineralization of silicon, which is deposited primarily in cell walls as amorphous silica. The mineral formation could be moderated by the structure and chemistry of lignin, a polyphenol polymer that is a major constituent of the secondary cell wall. However, the reactions between lignin and silica have not yet been well elucidated. Here, we investigate silica deposition onto a lignin model compound. Polyphenyl propanoid was synthesized from coniferyl alcohol by oxidative coupling with peroxidase in the presence of acidic tetramethyl orthosilicate, a silicic acid precursor. Raman, Fourier transform infrared, and X-ray photoelectron spectroscopies detected changes in lignin formation in the presence of silicic acid. Bonds between the Si-O/Si-OH residues and phenoxyl radicals and lignin functional groups formed during the first 3 h of the reaction, while silica continued to form over 3 days. Thermal gravimetric analysis indicated that lignin yields increased in the presence of silicic acid, possibly via the stabilization of phenolic radicals. This, in turn, resulted in shorter stretches of the lignin polymer. Silica deposition initiated within a lignin matrix via the formation of covalent Si-O-C bonds. The silica nucleants grew into 2-5 nm particles, as observed via scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy. Additional silica precipitated into an extended gel. Collectively, our results demonstrate a reciprocal relation by which lignin polymerization catalyzes the formation of silica, and at the same time silicic acid enhances lignin polymerization and yield.


Assuntos
Lignina , Dióxido de Silício , Lignina/química , Dióxido de Silício/química , Biomineralização , Ácido Silícico/química , Silício/química
2.
Colloids Surf B Biointerfaces ; 232: 113582, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37862949

RESUMO

Silica is extensively deposited by plants, however, only little is known about the molecular control over this process. Siliplant1 is the only known plant protein to precipitate biosilica. The protein contains seven repeats made of three domains. One of the domains exhibits a conserved sequence, which catalyzes silica precipitation in vitro. Here, silica was synthesized by the activity of a peptide carrying this conserved sequence. Infrared spectroscopy and thermal gravimetric analyses showed that the peptide was bound to the mineral. Scanning electron microscopy showed that silica-peptide particles of 22 ± 4 nm aggregated to spherical structures of 200-300 nm when the ratio of silicic acid to the peptide was below 183:1 molecules. When the ratio was about 183:1, similar particles aggregated into irregular structures, and silica gel formed at higher ratios. Solid-state NMR spectra indicated that the irregular aggregates were richer in Si-O-Si bonds as well as disordered peptide. Our results suggest that the peptide catalyzed the condensation of silicic acid and the formation of ∼20 nm particles, which aggregated into spheres. Excess of the peptide stabilized surface Si-OH groups that prevented spontaneous Si-O-Si bonding between aggregates. Under Si concentrations relevant to plant sap, the peptide and possibly Siliplant1, could catalyze nucleation of silica particles that aggregate into spherical aggregates.


Assuntos
Ácido Silícico , Dióxido de Silício , Dióxido de Silício/química , Ácido Silícico/química , Peptídeos/química , Proteínas , Espectrofotometria Infravermelho
3.
Acta Biomater ; 112: 286-297, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32434074

RESUMO

Many life forms generate intricate submicron biosilica structures with various important biological functions. The formation of such structures, from the silicic acid in the waters and in the soil, is thought to be regulated by unique proteins with high repeats of specific amino acids and unusual sidechain modifications. Some silicifying proteins are characterized by high prevalence of basic amino acids in their primary structures. Lysine-rich domains are found, for instance, in diatom silaffin proteins and in the sorghum grass siliplant1 protein. These domains exhibit catalytic activity in silica chain condensation, owing to molecular interactions of the lysine amine groups with the forming mineral. The use of amine chemistry by two very remote organisms has motivated us to seek other molecular biosilicification processes that may be common to the two life forms. In diatom silaffins, domains rich in phosphoserine residues are thought to assist the assembly of silaffin molecules into an organic supra-structure which serves as a template for the silica to precipitate on. This mold, held by salt bridges between serine phosphates and lysine amines, dictates the shape of the silica particles formed. Yet, silica synthesized with the dephosphorylated silaffin in phosphate buffer showed similar morphology to the one prepared with the native protein, suggesting that a defined spatial arrangement of serine phosphates is not required to generate silica with the desired shape. Concurrently, free phosphates enhanced the activity of siliplant1 in silica formation. It is therefore beneficial to characterize the involvement of these anions as co-factors in regulated silicification by functional peptides from the two proteins and to understand whether they play similar molecular role in the mechanism of mineralization. Here we analyze the molecular interactions of free phosphate ions with silica and the silaffin peptide PL12 and separately with silica and siliplant1 peptide SLP1 in the two biomimetic silica products generated by the two peptides. MAS NMR measurements show that the phosphate ions interact with the peptides and at the same time may be forming bonds with the silica mineral. This bridging capability may add another avenue by which the structure of the silica material is influenced. A model for the molecular/ionic interactions at the bio-inorganic interface is described, which may have bearings for the role of phosphorylated residues beyond the function as intermolecular cross linkers or free phosphate ions as co-factors in regulation of silicification. STATEMENT OF SIGNIFICANCE: The manuscript addresses the question how proteins in diatoms and plants regulate the biosilica materials that are produced for various purposes in organisms. It uses preparation of silica in vitro with functional peptide derivatives from a sorghum grass protein and from a diatom silaffin protein separately to show that phosphate ions are important for the control that is achieved by these proteins on the final shape of the silica material produced. It portrays via magnetic resonance spectroscopic measurements, in atomic detail, the interface between atoms in the peptide, atoms on the surface of the silica formed and the phosphate ions that form chemical bonds with atoms on the silica as part of the mechanism of action of these peptides.


Assuntos
Diatomáceas , Materiais Biocompatíveis , Peptídeos , Fosfatos , Poaceae , Dióxido de Silício
4.
Plant Sci ; 180(6): 746-56, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21497710

RESUMO

Plant biomineralization involves calcium and silicon transport and mineralization. Respective analytical methods and case studies are listed. Calcium carbonate is deposited in cystoliths, calcium oxalate in idioblasts. Silicon is deposited in phytoliths. Biomineralization is a coordinated process.


Assuntos
Cálcio/metabolismo , Plantas/metabolismo , Plantas/ultraestrutura , Silício/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Carbonato de Cálcio/metabolismo , Oxalato de Cálcio/metabolismo , Parede Celular/ultraestrutura , Microscopia Eletrônica de Varredura/métodos , Modelos Biológicos , Filogenia , Estruturas Vegetais/metabolismo , Estruturas Vegetais/ultraestrutura , Plantas/química , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA